Rahul Bhoyar commited on
Commit
4ddfb35
·
1 Parent(s): 8225db2

Updated file

Browse files
Files changed (1) hide show
  1. app.py +15 -17
app.py CHANGED
@@ -15,14 +15,12 @@ def read_pdf(uploaded_file):
15
  return text
16
 
17
  def querying(query_engine):
18
- progress_container = st.empty()
19
  query = st.text_input("Enter the Query for PDF:")
20
  submit = st.button("Generate The response for the query")
21
-
22
  if submit:
23
- progress_container.text("Fetching the response...")
24
- response = query_engine.query(query)
25
- st.write(f"**Response:** {response}")
26
 
27
 
28
  # docs = document_search.similarity_search(query_text)
@@ -40,20 +38,20 @@ def main():
40
  documents = Document(text=file_contents)
41
  documents = [documents]
42
  st.success("Documents loaded successfully!")
43
-
44
- embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
45
- service_context = ServiceContext.from_defaults(llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae)
46
-
47
- # Indexing the documents
48
- progress_container = st.empty()
49
- progress_container.text("Creating VectorStoreIndex...")
50
- # Download embeddings from OpenAI
51
 
52
- index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
53
- index.storage_context.persist()
54
- query_engine = index.as_query_engine()
55
- st.success("VectorStoreIndex created successfully!")
56
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  querying(query_engine)
58
 
59
 
 
15
  return text
16
 
17
  def querying(query_engine):
 
18
  query = st.text_input("Enter the Query for PDF:")
19
  submit = st.button("Generate The response for the query")
 
20
  if submit:
21
+ with st.spinner("Fetching the response..."):
22
+ response = query_engine.query(query)
23
+ st.write(f"**Response:** {response}")
24
 
25
 
26
  # docs = document_search.similarity_search(query_text)
 
38
  documents = Document(text=file_contents)
39
  documents = [documents]
40
  st.success("Documents loaded successfully!")
 
 
 
 
 
 
 
 
41
 
 
 
 
 
42
 
43
+ with st.spinner("Created Embedding model..."):
44
+ embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
45
+ service_context = ServiceContext.from_defaults(llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae)
46
+ st.success("Embedding model created successfully!")
47
+
48
+ # Download embeddings from OpenAI
49
+ with st.spinner("Created VectorStoreIndex..."):
50
+ index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
51
+ index.storage_context.persist()
52
+ query_engine = index.as_query_engine()
53
+ st.success("VectorStoreIndex created successfully!")
54
+
55
  querying(query_engine)
56
 
57