Local test functional
Browse files
Arial.ttf
ADDED
Binary file (276 kB). View file
|
|
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import os
|
2 |
-
from pathlib import Path
|
3 |
-
import pandas as pd
|
4 |
import gradio as gr
|
5 |
from collections import OrderedDict
|
6 |
from PIL import Image, ImageDraw, ImageFont
|
7 |
from io import BytesIO
|
|
|
|
|
8 |
import PyPDF2
|
9 |
import pdf2image
|
|
|
10 |
|
11 |
MAX_PAGES = 50
|
12 |
MAX_PDF_SIZE = 100000000 # almost 100MB
|
@@ -81,7 +82,7 @@ def pdf_to_grid(pdf_path):
|
|
81 |
images.append(im)
|
82 |
except Exception as e:
|
83 |
print(f"{pdf_path} PyPDF get_images {e}")
|
84 |
-
images = pdf2image.
|
85 |
|
86 |
# simpler but slower
|
87 |
# images = pdf2image.convert_from_path(pdf_path)
|
@@ -92,37 +93,27 @@ def pdf_to_grid(pdf_path):
|
|
92 |
return equal_image_grid(images)
|
93 |
|
94 |
|
95 |
-
def main(
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
for cat, val in zip(meta_cats.keys(), [complexity, evidence, form, operation, type])
|
102 |
-
if val
|
103 |
-
]
|
104 |
-
)
|
105 |
-
results = DIAGNOSTIC_TEST.query(query)
|
106 |
-
if len(results) == 0:
|
107 |
-
return f"No results found for query {query}", "", "", "", ""
|
108 |
-
|
109 |
-
for i, sample in results.sample(frac=1).iterrows():
|
110 |
-
if not sample['nhash']:
|
111 |
-
continue
|
112 |
-
print("Sampled: ", sample["nhash"])
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
continue
|
119 |
-
|
120 |
-
grid = pdf_to_grid(pdf_path)
|
121 |
-
if
|
122 |
continue
|
123 |
-
|
124 |
-
|
125 |
-
return
|
|
|
126 |
|
127 |
_CLASSES = [
|
128 |
"letter",
|
@@ -141,25 +132,23 @@ _CLASSES = [
|
|
141 |
"questionnaire",
|
142 |
"resume",
|
143 |
"memo",
|
|
|
144 |
]
|
145 |
-
# test
|
146 |
-
# l, im, f = main(*slider_defaults)
|
147 |
|
148 |
-
#load both datasets in memory? --> easier retrieval afterwards with seed index based on pressing button
|
149 |
-
DATASETS =
|
150 |
-
|
151 |
-
"bdpc/rvl_cdip_mp",
|
152 |
-
split="test"),
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
}
|
157 |
-
|
158 |
-
meta_cats = {'dataset': ['rvl_cdip', 'rvl_cdip_N'],
|
159 |
-
'label': _CLASSES
|
160 |
-
}
|
161 |
sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()]
|
162 |
-
slider_defaults = [
|
|
|
|
|
|
|
163 |
|
164 |
outputs = [
|
165 |
gr.Textbox(label="label"),
|
@@ -167,5 +156,21 @@ outputs = [
|
|
167 |
gr.File(label="PDF"),
|
168 |
]
|
169 |
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from collections import OrderedDict
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
from io import BytesIO
|
6 |
+
import time
|
7 |
+
import tempfile
|
8 |
import PyPDF2
|
9 |
import pdf2image
|
10 |
+
from datasets import load_dataset
|
11 |
|
12 |
MAX_PAGES = 50
|
13 |
MAX_PDF_SIZE = 100000000 # almost 100MB
|
|
|
82 |
images.append(im)
|
83 |
except Exception as e:
|
84 |
print(f"{pdf_path} PyPDF get_images {e}")
|
85 |
+
images = pdf2image.convert_from_bytes(pdf_path)
|
86 |
|
87 |
# simpler but slower
|
88 |
# images = pdf2image.convert_from_path(pdf_path)
|
|
|
93 |
return equal_image_grid(images)
|
94 |
|
95 |
|
96 |
+
def main(dataset, label):
|
97 |
+
# to get different samples, use timestamp as seed
|
98 |
+
timestamp = time.time()
|
99 |
+
seed = int(timestamp * 1000) % 1000000
|
100 |
+
|
101 |
+
shuffled_dataset = DATASETS[dataset].shuffle(buffer_size=10, seed=seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# first get PDF file
|
104 |
+
for sample in shuffled_dataset:
|
105 |
+
label_column = "label" if "label" in sample else "labels"
|
106 |
+
filelabel = _CLASSES[sample[label_column]]
|
107 |
+
if label and filelabel != label:
|
108 |
continue
|
109 |
+
pdf_path = sample["file"]
|
110 |
+
grid = pdf_to_grid(BytesIO(pdf_path))
|
111 |
+
if grid is None:
|
112 |
continue
|
113 |
+
PDF = tempfile.NamedTemporaryFile(suffix=".pdf")
|
114 |
+
PDF.write(pdf_path)
|
115 |
+
return filelabel, grid, pdf_path
|
116 |
+
|
117 |
|
118 |
_CLASSES = [
|
119 |
"letter",
|
|
|
132 |
"questionnaire",
|
133 |
"resume",
|
134 |
"memo",
|
135 |
+
''
|
136 |
]
|
|
|
|
|
137 |
|
138 |
+
# load both datasets in memory? --> easier retrieval afterwards with seed index based on pressing button
|
139 |
+
DATASETS = OrderedDict(
|
140 |
+
{
|
141 |
+
"rvl_cdip": load_dataset("bdpc/rvl_cdip_mp", split="test", streaming=True),
|
142 |
+
"rvl_cdip_N": load_dataset("bdpc/rvl_cdip_n_mp", split="test", streaming=True),
|
143 |
+
}
|
144 |
+
)
|
145 |
+
|
146 |
+
meta_cats = {"dataset": ["rvl_cdip", "rvl_cdip_N"], "label": _CLASSES}
|
|
|
|
|
|
|
|
|
147 |
sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()]
|
148 |
+
slider_defaults = [sliders[0].value, None]
|
149 |
+
|
150 |
+
# test
|
151 |
+
# l, im, f = main(*slider_defaults)
|
152 |
|
153 |
outputs = [
|
154 |
gr.Textbox(label="label"),
|
|
|
156 |
gr.File(label="PDF"),
|
157 |
]
|
158 |
|
159 |
+
DESCRIPTION = """
|
160 |
+
Visualize PDF samples from multi-page (PDF) document classification datasets @ https://huggingface.co/datasets/bdpc
|
161 |
+
|
162 |
+
- **dataset**: dataset name
|
163 |
+
- **label**: label name
|
164 |
+
|
165 |
+
The first time that the app is launched, it will download the datasets, which can take a few minutes.
|
166 |
+
For fastest response, choose the rvl_cdip_N dataset, which is considerably smaller to iterate over.
|
167 |
+
"""
|
168 |
+
|
169 |
+
iface = gr.Interface(
|
170 |
+
fn=main,
|
171 |
+
inputs=sliders,
|
172 |
+
outputs=outputs,
|
173 |
+
description=DESCRIPTION,
|
174 |
+
title="Beyond Document Page Classification: Examples",
|
175 |
+
)
|
176 |
+
iface.launch(share=True)
|