File size: 19,062 Bytes
68329f5 0d5608c 0ae30e6 68329f5 0d5608c 68329f5 0d5608c 60be47a 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 0d5608c 68329f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import advertools as adv
import streamlit as st
import tempfile
import pandas as pd
from urllib.parse import urlparse
import base64
import requests
import time
from bs4 import BeautifulSoup
import re
#
def get_seo_powersuite_data(domains, api_key):
url_domain_inlink_rank = "https://api.seopowersuite.com/backlinks/v1.0/get-domain-inlink-rank"
url_refdomains_count = "https://api.seopowersuite.com/backlinks/v1.0/get-refdomains-count"
headers = {"Content-Type": "application/json"}
results = []
for i in range(0, len(domains), 100):
batch_domains = domains[i:i+100]
# Get domain inlink rank
start_time = time.time()
payload_domain_inlink_rank = {"target": list(batch_domains)}
params_domain_inlink_rank = {"apikey": api_key, "output": "json"}
response_domain_inlink_rank = requests.post(url_domain_inlink_rank, json=payload_domain_inlink_rank, headers=headers, params=params_domain_inlink_rank)
duration = time.time() - start_time
print(f"get-domain-inlink-rank API call for {len(batch_domains)} domains took {duration:.2f} seconds")
if response_domain_inlink_rank.status_code == 200:
data_domain_inlink_rank = response_domain_inlink_rank.json()
domain_inlink_rank_dict = {page["url"]: page["domain_inlink_rank"] for page in data_domain_inlink_rank["pages"]}
else:
st.error(f"Error fetching domain inlink rank data from SEO PowerSuite API: {response_domain_inlink_rank.status_code}")
st.error("Error Response:")
st.write(response_domain_inlink_rank.text)
return None
# Get refdomains count
start_time = time.time()
payload_refdomains_count = {"target": list(batch_domains), "mode": "domain"}
params_refdomains_count = {"apikey": api_key, "output": "json"}
response_refdomains_count = requests.post(url_refdomains_count, json=payload_refdomains_count, headers=headers, params=params_refdomains_count)
duration = time.time() - start_time
print(f"get-refdomains-count API call for {len(batch_domains)} domains took {duration:.2f} seconds")
if response_refdomains_count.status_code == 200:
data_refdomains_count = response_refdomains_count.json()
for metric in data_refdomains_count["metrics"]:
result = {
"target": metric["target"],
"domain_inlink_rank": domain_inlink_rank_dict.get(metric["target"], None),
"refdomains": metric["refdomains"]
}
results.append(result)
else:
st.error(f"Error fetching refdomains count data from SEO PowerSuite API: {response_refdomains_count.status_code}")
st.error("Error Response:")
st.write(response_refdomains_count.text)
return None
return pd.DataFrame(results)
def get_peter_lowe_domains():
url = "https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus&mimetype=plaintext"
response = requests.get(url)
lines = response.text.split('\n')
domains = [line.strip('|^') for line in lines if line.startswith('||')]
return set(domains)
def extract_hostname(url):
return urlparse(url).netloc
def remove_subdomain(domain):
parts = domain.split('.')
if len(parts) > 2:
return '.'.join(parts[-2:])
return domain
def domain_matches_blacklist(domain, regex_patterns):
for pattern in regex_patterns:
if re.search(pattern, domain, re.IGNORECASE):
return 'Yes'
return 'No'
def find_sitemap(url):
robots_url = f"{urlparse(url).scheme}://{urlparse(url).netloc}/robots.txt"
try:
robots_response = requests.get(robots_url)
if robots_response.status_code == 200:
for line in robots_response.text.split("\n"):
if line.startswith("Sitemap:"):
return line.split(":", 1)[1].strip()
except requests.exceptions.RequestException:
pass
sitemap_urls = [
"/sitemap.xml", "/wp-sitemap.xml", "/?sitemap=1", "/sitemap_index/xml",
"/sitemap-index.xml", "/sitemap.php", "/sitemap.txt", "/sitemap.xml.gz",
"/sitemap/", "/sitemap/sitemap.xml", "/sitemapindex.xml", "/sitemap/index.xml", "/sitemap1.xml"
]
for sitemap_url in sitemap_urls:
try:
sitemap_response = requests.get(f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}")
if sitemap_response.status_code == 200:
return f"{urlparse(url).scheme}://{urlparse(url).netloc}{sitemap_url}"
except requests.exceptions.RequestException:
pass
return None
def crawl_posts(df, page_count):
crawl_results = []
for i, row in df.head(page_count).iterrows():
url = row['loc']
try:
response = requests.get(url)
if response.status_code == 200:
html = response.text
soup = BeautifulSoup(html, 'html.parser')
title = soup.title.text if soup.title else ''
meta_desc = soup.find('meta', attrs={'name': 'description'})['content'] if soup.find('meta', attrs={'name': 'description'}) else ''
links = []
for a in soup.find_all('a', href=True):
link_url = a['href']
link_text = a.text.strip()
link_nofollow = 'nofollow' in a.get('rel', [])
links.append({'url': link_url, 'text': link_text, 'nofollow': link_nofollow})
crawl_results.append({
'url': url,
'title': title,
'meta_desc': meta_desc,
'links': links
})
except requests.exceptions.RequestException:
pass
return pd.DataFrame(crawl_results)
def download_csv(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} CSV</a>'
return href
def main():
st.title("Website Crawler")
urls = st.text_area("Enter the website URLs (one per line):", value="")
page_count = st.number_input("Enter the number of pages to crawl:", value=2000, min_value=1, step=1)
col1, col2 = st.columns(2)
with col1:
domain_filter_regex_input = st.text_area("Filter out Unique Outbound Domains:", help="This uses a regex filter to find domains in the unique outbound domains list. Enter one regex per line.", value="instagram\nfacebook\ntwitter\nlinkedin\nsnapchat\ntiktok\nreddit\npinterest\namazon\ncdn\nyoutube\nyoutu.be")
with col2:
domain_match_regex_input = st.text_area("Domain Blacklist:", help="This uses a regex filter to match domains in the Unique Outbound Domains to the blacklist entered. Enter one regex per line.", value="xyz\ncasino\ncbd\nessay")
use_seo_powersuite = st.checkbox("Use SEO PowerSuite")
api_key = None
if use_seo_powersuite:
api_key = st.text_input("Enter the SEO PowerSuite API key:", type="password")
download_links = st.checkbox("Show Download Links")
if st.button("Crawl"):
if urls:
url_list = [url.strip() for url in urls.split('\n') if url.strip()]
if url_list:
all_link_df = pd.DataFrame()
all_unique_outbound_links_df = pd.DataFrame()
all_final_df = pd.DataFrame()
all_analysis_df = pd.DataFrame()
for url in url_list:
with st.spinner(f"Finding sitemap for {url}..."):
sitemap_url = find_sitemap(url)
if sitemap_url:
with st.spinner(f"Crawling {url}..."):
sitemap_df = adv.sitemap_to_df(sitemap_url)
crawl_results = crawl_posts(sitemap_df, page_count)
if not crawl_results.empty:
link_df = pd.DataFrame(crawl_results['links'].explode().tolist())
link_df = link_df[~link_df['url'].str.startswith(('/','#'))]
link_df['internal'] = link_df['url'].apply(lambda x: extract_hostname(url) in extract_hostname(x))
link_df = link_df[link_df['internal'] == False] # Filter out internal links
link_df.insert(0, 'Originating Domain', url) # Add 'Originating Domain' column
link_df = link_df[['Originating Domain', 'url', 'text', 'nofollow']] # Remove the 'internal' column
outbound_links_df = link_df.copy() # Create a copy of link_df for outbound links
unique_links_df = link_df['url'].value_counts().reset_index()
unique_links_df = unique_links_df[~unique_links_df['url'].str.startswith(('/','#'))]
unique_links_df.columns = ['Link', 'Count']
unique_links_df.insert(0, 'Originating Domain', url)
unique_outbound_links_df = outbound_links_df['url'].value_counts().reset_index()
unique_outbound_links_df = unique_outbound_links_df[~unique_outbound_links_df['url'].str.startswith(('/','#'))]
unique_outbound_links_df.columns = ['Link', 'Count']
unique_outbound_links_df.insert(0, 'Originating Domain', url)
outbound_links_df['url'] = outbound_links_df['url'].astype(str)
domain_df = outbound_links_df['url'].apply(extract_hostname).value_counts().reset_index()
domain_df.columns = ['Domain', 'Count']
domain_df = domain_df[domain_df['Domain'] != '']
peter_lowe_domains = get_peter_lowe_domains()
domain_df['In Peter Lowe List'] = domain_df['Domain'].apply(lambda x: 'Yes' if remove_subdomain(x) in peter_lowe_domains else 'No')
domain_df.insert(0, 'Originating Domain', url)
# Determine the 'DoFollow' value for each domain
domain_df['DoFollow'] = domain_df['Domain'].apply(lambda x: any(outbound_links_df[(outbound_links_df['url'].str.contains(x)) & (outbound_links_df['nofollow'] == False)]))
if not domain_df.empty:
if domain_filter_regex_input:
domain_filter_regex_patterns = domain_filter_regex_input.split('\n')
domain_filter_regex = '|'.join(domain_filter_regex_patterns)
domain_df = domain_df[~domain_df['Domain'].str.contains(domain_filter_regex, case=False, regex=True)]
if not domain_df.empty:
if domain_match_regex_input:
domain_match_regex_patterns = domain_match_regex_input.split('\n')
domain_df['Blacklist'] = domain_df['Domain'].apply(lambda x: domain_matches_blacklist(x, domain_match_regex_patterns) == 'Yes')
else:
domain_df['Blacklist'] = False
total_domains = len(domain_df)
peter_lowe_percentage = round((domain_df['In Peter Lowe List'] == 'No').sum() / total_domains * 100, 2)
blacklist_percentage = round((domain_df['Blacklist'] == True).sum() / total_domains * 100, 2)
analysis_data = {
'Originating Domain': [url] * 2,
'Metric': ['Percentage of domains not in Peter Lowe\'s list', 'Percentage of domains in the Blacklist'],
'Value': [f"{peter_lowe_percentage}%", f"{blacklist_percentage}%"]
}
analysis_df = pd.DataFrame(analysis_data)
if use_seo_powersuite and api_key:
seo_powersuite_df = get_seo_powersuite_data(domain_df['Domain'].tolist(), api_key)
if seo_powersuite_df is not None:
domain_df = pd.merge(domain_df, seo_powersuite_df, left_on='Domain', right_on='target', how='left')
domain_df.drop('target', axis=1, inplace=True)
avg_domain_inlink_rank = round(domain_df['domain_inlink_rank'].mean(), 2)
avg_domain_inlink_rank_less_than_70 = round(domain_df[domain_df['domain_inlink_rank'] < 70]['domain_inlink_rank'].mean(), 2)
avg_refdomains = round(domain_df['refdomains'].mean(), 2)
additional_analysis_data = {
'Originating Domain': [url] * 3,
'Metric': [
'Average domain inlink rank',
'Average domain inlink rank (< 70)',
'Average number of refdomains'
],
'Value': [
avg_domain_inlink_rank,
avg_domain_inlink_rank_less_than_70,
avg_refdomains
]
}
analysis_df = pd.concat([analysis_df, pd.DataFrame(additional_analysis_data)], ignore_index=True)
desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist', 'domain_inlink_rank', 'refdomains']
final_df = domain_df[desired_columns]
else:
desired_columns = ['Originating Domain', 'Domain', 'Count', 'In Peter Lowe List', 'DoFollow', 'Blacklist']
final_df = domain_df[desired_columns]
else:
st.warning(f"No unique outbound domains found for {url} after filtering.")
else:
st.warning(f"No unique outbound domains found for {url}.")
all_link_df = pd.concat([all_link_df, link_df], ignore_index=True)
all_unique_outbound_links_df = pd.concat([all_unique_outbound_links_df, unique_outbound_links_df], ignore_index=True)
all_final_df = pd.concat([all_final_df, final_df], ignore_index=True)
all_analysis_df = pd.concat([all_analysis_df, analysis_df], ignore_index=True)
else:
st.warning(f"No posts found in the sitemap for {url}.")
else:
st.warning(f"Sitemap not found for {url}.")
st.subheader("Outbound Links")
if download_links:
st.markdown(download_csv(all_link_df, "Outbound Links"), unsafe_allow_html=True)
else:
st.write(all_link_df)
st.subheader("Unique Outbound Links")
if download_links:
st.markdown(download_csv(all_unique_outbound_links_df, "Unique Outbound Links"), unsafe_allow_html=True)
else:
st.write(all_unique_outbound_links_df)
st.subheader("Unique Outbound Domains")
if download_links:
st.markdown(download_csv(all_final_df, "Unique Outbound Domains"), unsafe_allow_html=True)
else:
st.write(all_final_df)
st.subheader("Analytics")
all_analysis_df = all_analysis_df.pivot(index='Originating Domain', columns='Metric', values='Value').reset_index()
all_analysis_df.columns.name = None
if use_seo_powersuite and api_key:
numeric_columns = ['Average domain inlink rank', 'Average domain inlink rank (< 70)', 'Average number of refdomains']
all_analysis_df[numeric_columns] = all_analysis_df[numeric_columns].astype(int)
if download_links:
st.markdown(download_csv(all_analysis_df, "Analytics"), unsafe_allow_html=True)
else:
st.table(all_analysis_df)
else:
st.warning("Please enter at least one website URL.")
else:
st.warning("Please enter website URLs.")
if __name__ == '__main__':
main() |