jpxkqx commited on
Commit
9383270
·
1 Parent(s): 33d1544

Update content with metric specific features

Browse files
Files changed (2) hide show
  1. peak_signal_to_noise_ratio.py +55 -67
  2. requirements.txt +2 -1
peak_signal_to_noise_ratio.py CHANGED
@@ -1,95 +1,83 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """TODO: Add a description here."""
15
 
16
- import evaluate
17
  import datasets
 
18
 
 
 
 
19
 
20
- # TODO: Add BibTeX citation
21
- _CITATION = """\
22
- @InProceedings{huggingface:module,
23
- title = {A great new module},
24
- authors={huggingface, Inc.},
25
- year={2020}
26
- }
27
- """
28
 
29
- # TODO: Add description of the module here
30
- _DESCRIPTION = """\
31
- This new module is designed to solve this great ML task and is crafted with a lot of care.
 
32
  """
33
 
34
 
35
- # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
- Calculates how good are predictions given some references, using certain scores
38
  Args:
39
- predictions: list of predictions to score. Each predictions
40
- should be a string with tokens separated by spaces.
41
- references: list of reference for each prediction. Each
42
- reference should be a string with tokens separated by spaces.
43
  Returns:
44
- accuracy: description of the first score,
45
- another_score: description of the second score,
 
46
  Examples:
47
- Examples should be written in doctest format, and should illustrate how
48
- to use the function.
49
-
50
- >>> my_new_module = evaluate.load("my_new_module")
51
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
52
- >>> print(results)
53
- {'accuracy': 1.0}
 
 
 
54
  """
55
 
56
- # TODO: Define external resources urls if needed
57
- BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
58
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
61
- class PeakSignaltoNoiseRatio(evaluate.Metric):
62
- """TODO: Short description of my evaluation module."""
63
 
 
 
64
  def _info(self):
65
- # TODO: Specifies the evaluate.EvaluationModuleInfo object
66
  return evaluate.MetricInfo(
67
- # This is the description that will appear on the modules page.
68
- module_type="metric",
69
  description=_DESCRIPTION,
70
  citation=_CITATION,
71
  inputs_description=_KWARGS_DESCRIPTION,
72
- # This defines the format of each prediction and reference
73
  features=datasets.Features({
74
- 'predictions': datasets.Value('int64'),
75
- 'references': datasets.Value('int64'),
76
  }),
77
- # Homepage of the module for documentation
78
- homepage="http://module.homepage",
79
- # Additional links to the codebase or references
80
- codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
81
- reference_urls=["http://path.to.reference.url/new_module"]
82
  )
83
 
84
- def _download_and_prepare(self, dl_manager):
85
- """Optional: download external resources useful to compute the scores"""
86
- # TODO: Download external resources if needed
87
- pass
88
-
89
- def _compute(self, predictions, references):
90
- """Returns the scores"""
91
- # TODO: Compute the different scores of the module
92
- accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
93
  return {
94
- "accuracy": accuracy,
 
 
 
 
 
 
95
  }
 
1
+ """Accuracy metric."""
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
3
  import datasets
4
+ import numpy as np
5
 
6
+ from skimage.metrics import peak_signal_noise_ratio
7
+ from typing import Dict, Optional
8
+ import evaluate
9
 
 
 
 
 
 
 
 
 
10
 
11
+ _DESCRIPTION = """
12
+ Compute the Peak Signal-to-Noise Ratio (PSNR) for an image.
13
+
14
+ Please pay attention to the `data_range` parameter with floating-point images.
15
  """
16
 
17
 
 
18
  _KWARGS_DESCRIPTION = """
 
19
  Args:
20
+ predictions (`list` of `np.array`): Predicted labels.
21
+ references (`list` of `np.array`): Ground truth labels.
22
+ sample_weight (`list` of `float`): Sample weights Defaults to None.
 
23
  Returns:
24
+ psnr (`float`):Peak Signal-to-Noise Ratio. The SSIM values are positive. Typical
25
+ values for the PSNR in lossy image and video compression are between 30 and 50 dB,
26
+ provided the bit depth is 8 bits, where higher is better.
27
  Examples:
28
+ Example 1-A simple example
29
+ >>> psnr = evaluate.load("jpxkqx/peak_signal_to_noise_ratio")
30
+ >>> results = psnr.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
31
+ >>> print(results)
32
+ {'psnr': 0.5}
33
+ Example 2-The same as Example 1, except with `sample_weight` set.
34
+ >>> psnr = evaluate.load("jpxkqx/peak_signal_to_noise_ratio")
35
+ >>> results = psnr.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4])
36
+ >>> print(results)
37
+ {'psnr': 0.8778625954198473}
38
  """
39
 
 
 
40
 
41
+ _CITATION = """
42
+ @article{boulogne2014scikit,
43
+ title={Scikit-image: Image processing in Python},
44
+ author={Boulogne, Fran{\c{c}}ois and Warner, Joshua D and Neil Yager, Emmanuelle},
45
+ journal={J. PeerJ},
46
+ volume={2},
47
+ pages={453},
48
+ year={2014}
49
+ }
50
+ """
51
 
 
 
 
52
 
53
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
54
+ class StructuralSimilarityIndexMeasure(evaluate.Metric):
55
  def _info(self):
 
56
  return evaluate.MetricInfo(
 
 
57
  description=_DESCRIPTION,
58
  citation=_CITATION,
59
  inputs_description=_KWARGS_DESCRIPTION,
 
60
  features=datasets.Features({
61
+ "predictions": datasets.Sequence(datasets.Array2D("float32")),
62
+ "references": datasets.Sequence(datasets.Array2D("float32")),
63
  }),
64
+ reference_urls=["https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio"],
 
 
 
 
65
  )
66
 
67
+ def _compute(
68
+ self,
69
+ predictions,
70
+ references,
71
+ data_range: Optional[float] = None,
72
+ sample_weight=None,
73
+ ) -> Dict[str, float]:
74
+ samples = zip(predictions, references)
 
75
  return {
76
+ "psnr": np.average(
77
+ list(map(
78
+ lambda args: peak_signal_noise_ratio(*args, data_range),
79
+ samples
80
+ )),
81
+ weights=sample_weight
82
+ )
83
  }
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- git+https://github.com/huggingface/evaluate@main
 
 
1
+ git+https://github.com/huggingface/evaluate@main
2
+ scikit-image>=0.19