import os
import gradio as gr
from datasets import ClassLabel
from datasets import load_dataset
import random
import pandas as pd
from huggingface_hub import login
def remove_space(example):
'''
移除資料集當中「犯罪事實」欄 (Corpus-Delicti) 當中作為斷詞字元的空白字元,以及每句開頭的「ㄧ、」。
並且在文章的開頭跟結尾加入 bos_token = '', eos_token = ''
'''
return {'Corpus-Delicti': example['Corpus-Delicti'].replace(" ", "").split('一、')[1].replace('犯罪事實:', '')}
def download_file(content, filename):
with open(filename, "w", encoding="utf-8") as f:
f.write(content)
def random_elements(dataset, num_examples=5):
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
picks = []
for _ in range(num_examples):
pick = random.randint(0, len(dataset)-1)
while pick in picks:
pick = random.randint(0, len(dataset)-1)
picks.append(pick)
df = pd.DataFrame(dataset[picks])
for column, typ in dataset.features.items():
if isinstance(typ, ClassLabel):
df[column] = df[column].transform(lambda i: typ.names[i])
return df
def random_next(num_examples=5):
random_selected = random_elements(dataset["train"], num_examples=num_examples)
court_name = random_selected['Court'][0]
case_no = random_selected['CaseNo'][0]
crime_descrip = random_selected['Corpus-Delicti'][0]
filename = court_name + "_" + case_no + '.txt'
data_tuple = (court_name, case_no, crime_descrip, filename)
return data_tuple
def gen_template(crime_descrip, element, tag):
INTRO_BLURB = "The following is a description of the crime in the verdict. Write a response for the legal element of crime and its tag that appropriately completes the request."
DESCRIPT_KEY = "### Description:"
ELEMENT_KEY = "### Element:"
TAG_KEY = "### Tag:"
END_KEY = "### End"
# assert tag == None, "未選取構成要件要素標籤"
# try:
# tag_name = tag.split(",")[1].strip(")").strip().strip("'")
# except IndexError: # 防呆用的。如果什麼資料都沒填就按下按鈕,就會觸發以下程式碼,並傳回空樣板。
# # 改為調適 Alpaca 格式的資料
# blurb = f"{INTRO_BLURB}\n"
# descript = f"{DESCRIPT_KEY}\n{crime_descrip}\n"
# element = f"{ELEMENT_KEY}\n{element}\n" if element else f"{ELEMENT_KEY}\n<未填寫構成要件要素>\n"
# tag = f"{TAG_KEY}\n{tag}\n" if tag else f"{TAG_KEY}\n<未選取構成要件要素標籤>\n"
# end = f"{END_KEY}"
# template = blurb + '\n' + descript + '\n' + element + '\n' + tag + '\n' + end
# return template
blurb = f"{INTRO_BLURB}\n"
# 改為調適 Alpaca 格式的資料
descript = f"{DESCRIPT_KEY}\n{crime_descrip}\n"
element = f"{ELEMENT_KEY}\n{element}\n" if element else f"{ELEMENT_KEY}\n<未填寫構成要件要素>\n"
tag = f"{TAG_KEY}\n{tag}\n" if tag else f"{TAG_KEY}\n<未選取構成要件要素標籤>\n"
end = f"{END_KEY}"
template = blurb + '\n' + descript + '\n' + element + '\n' + tag + '\n' + end
return template
# 用來產生下載檔案按鈕用的 JavaScript
js_download = '''function downloadFile(result, filename) {
//藉型別陣列建構的 blob 來建立 URL
let fileName = filename;
const data = result;
let blob = new Blob([data], {
type: "application/octet-stream",
});
var href = URL.createObjectURL(blob);
// 從 Blob 取出資料
var link = document.createElement("a");
document.body.appendChild(link);
link.href = href;
link.download = fileName;
link.click();
}
'''
# 下載判決書資料集
use_auth_token = os.environ['HUB_TOKEN'] # 下載判決書資料集所需要的 token。
login(token = os.environ['HUB_TOKEN'], add_to_git_credential=True)
dataset = load_dataset("jslin09/Fraud_Case_Verdicts", token=use_auth_token, revision="main")
dataset = dataset.map(remove_space)
# 隨機選取案件
random_selected = random_next()
court_name = random_selected[0]
case_no = random_selected[1]
crime_descrip = random_selected[2]
filename = random_selected[3]
with gr.Blocks() as demo:
gr.Markdown(
"""