Spaces:
Sleeping
Sleeping
import torch | |
from peft import PeftModel, PeftConfig | |
import transformers | |
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BloomForCausalLM, GenerationConfig | |
from transformers.models.opt.modeling_opt import OPTDecoderLayer | |
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom') | |
BASE_MODEL = "bigscience/bloom-3b" | |
LORA_WEIGHTS = "jslin09/LegalChatbot-bloom-3b" | |
config = PeftConfig.from_pretrained(LORA_WEIGHTS) | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: | |
pass | |
if device == "cuda": | |
model = BloomForCausalLM.from_pretrained( | |
BASE_MODEL, | |
load_in_8bit=True, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16) | |
elif device == "mps": | |
model = BloomForCausalLM.from_pretrained( | |
BASE_MODEL, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = BloomForCausalLM.from_pretrained( | |
BASE_MODEL, device_map={"": device}, | |
low_cpu_mem_usage=True | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
) | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
def generate_prompt_tw(instruction, input=None): | |
if input: | |
return f"""以下是描述任務的指令,並與提供進一步上下文的輸入配對。編寫適當完成請求的回應。 | |
### 指令: | |
{instruction} | |
### 輸入: | |
{input} | |
### 回應:""" | |
else: | |
return f"""以下是描述任務的指令。編寫適當完成請求的回應。 | |
### 指令: | |
{instruction} | |
### 回應:""" | |
model.eval() | |
if torch.__version__ >= "2": | |
model = torch.compile(model) | |
def evaluate( | |
instruction, | |
input=None, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40, | |
num_beams=4, | |
max_new_tokens=128, | |
**kwargs, | |
): | |
prompt = generate_prompt(instruction, input) # 中文版的話,函數名稱要改用 generate_prompt_tw | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
do_sample=True, | |
**kwargs, | |
) | |
with torch.no_grad(): | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
s = generation_output.sequences[0] | |
output = tokenizer.decode(s) | |
# return output.split("### Response:")[1].strip() # 中文版的話,要改為 return output.split("### 回應:")[1].strip() | |
return output.split("### 回應:")[1].strip() | |
gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, label="Instruction", placeholder="Tell me about alpacas." | |
), | |
gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), | |
gr.components.Slider( | |
minimum=1, maximum=2000, step=1, value=128, label="Max tokens" | |
), | |
], | |
outputs=[ | |
gr.components.Textbox( | |
lines=5, | |
label="Output", | |
) | |
], | |
title="🌲 🌲 🌲 BLOOM-LoRA-LegalChatbot", | |
description="BLOOM-LoRA-LegalChatbot is a 3B-parameter BLOOM model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and my Legal QA dataset, and makes use of the Huggingface BLOOM implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", | |
).launch() |