Spaces:
Running
Running
File size: 3,372 Bytes
32b0450 dccf4fa d97db75 065361a 7fc842c dccf4fa e4bbe61 c203e02 7fc842c 065361a 4eebfca 065361a e0219f0 4eebfca 065361a dccf4fa 315025d dccf4fa 2ace237 dccf4fa 1616f44 351b9e5 081ad0c 9bd8a55 dccf4fa 7fc842c a7c67ff 28f307c 48e0bd2 28f307c f2aa585 94a4093 f2aa585 dccf4fa 8c28f7d 8d21a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
from transformers import AutoModelForCausalLM
from transformers import BloomTokenizerFast
from transformers import pipeline, set_seed
import random
model_name = "bloom-560m"
model = AutoModelForCausalLM.from_pretrained(f'jslin09/{model_name}-finetuned-fraud')
tokenizer = BloomTokenizerFast.from_pretrained(f'bigscience/{model_name}', bos_token = '<s>', eos_token = '</s>', pad_token = '<pad>')
def rnd_generate(prompt):
rnd_seed = random.randint(10, 500)
set_seed(rnd_seed)
inputs = tokenizer(prompt, return_tensors="pt") # 回傳的張量使用 Pytorch的格式。如果是 Tensorflow 格式的話,則指定為 "tf"。
results = model.generate(inputs["input_ids"],
max_length=500,
num_return_sequences=1, # 產生 1 個句子回來。
do_sample=True,
temperature=0.75,
top_k=50,
top_p=0.9)
return tokenizer.decode(results[0])
def generate(prompt):
result_length = len(prompt) + 4
inputs = tokenizer(prompt, return_tensors="pt") # 回傳的張量使用 Pytorch的格式。如果是 Tensorflow 格式的話,則指定為 "tf"。
results = model.generate(inputs["input_ids"],
num_return_sequences=2, # 產生 2 個句子回來。
max_length=result_length,
early_stopping=True,
do_sample=True,
top_k=50,
top_p=0.9
)
return tokenizer.decode(results[0])
examples = [
["闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具,"],
["梅友乾明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,"],
["王大明意圖為自己不法所有,基於竊盜之犯意,"]
]
prompts = [
["輸入寫書類的句子,讓電腦生成下一句。或是按以下的範例句子。"],
["輸入寫書類的開頭句子,讓電腦隨機生成整篇草稿。"]
]
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center;">Legal Document Drafting</h1>
""")
with gr.Row() as row:
with gr.Column():
gr.Markdown("Description about Legal Document drafting demo")
with gr.Column(scale=1, min_width=600):
with gr.Tab("Writing Assist"):
result = gr.components.Textbox(lines=7, label="Writing Assist", placeholder=prompts[0])
prompt = gr.components.Textbox(lines=2, label="Prompt", placeholder=examples[0], visible=False)
gr.Examples(examples, label='Examples', inputs=[prompt])
prompt.change(generate, inputs=[prompt], outputs=[result])
btn = gr.Button("Next sentence")
btn.click(generate, inputs=[result], outputs=[result])
with gr.Tab("Random Generative"):
result2 = gr.components.Textbox(lines=7, label="Random Generative", show_label=True, placeholder=prompts[1])
gr.Examples(examples, label='Examples', inputs=[result2])
rnd_btn = gr.Button("Random Drafting")
rnd_btn.click(rnd_generate, inputs=[result2], outputs=[result2])
if __name__ == "__main__":
demo.launch() |