Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,4 +7,27 @@ model = AutoModelForCausalLM.from_pretrained("jslin09/bloom-560m-finetuned-fraud
|
|
7 |
|
8 |
def predict(input, history=[]):
|
9 |
# tokenize the new input sentence
|
10 |
-
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def predict(input, history=[]):
|
9 |
# tokenize the new input sentence
|
10 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
11 |
+
|
12 |
+
# append the new user input tokens to the chat history
|
13 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
14 |
+
|
15 |
+
# generate a response
|
16 |
+
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
17 |
+
|
18 |
+
# convert the tokens to text, and then split the responses into lines
|
19 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
20 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
21 |
+
return response, history
|
22 |
+
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
chatbot = gr.Chatbot()
|
25 |
+
state = gr.State([])
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
|
29 |
+
|
30 |
+
txt.submit(predict, [txt, state], [chatbot, state])
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.launch()
|