import gradio as gr from transformers import pipeline #pipe = pipeline("text-generation") #gr.Interface.from_pipeline(pipe).launch() API_URL = "https://api-inference.huggingface.co/models/jslin09/bloom-560m-finetuned-fraud" headers = {"Authorization": "Bearer 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"} # Read only description = "Legal Document Drafting with BLOOM" api_key="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" examples=[ ["闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具,"], ["森上梅前明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,"] ] iface = gr.Interface.load( "huggingface/jslin09/bloom-560m-finetuned-fraud", title="Drafting", inputs=[ gr.Textbox(lines=10, label="Prompt", value="闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具,"), # prompt gr.Slider(10, 200, step=10, value=100), # token_count gr.Slider(0.2, 2.0, step=0.1, value=1.0), # temperature gr.Slider(0.0, 1.0, step=0.05, value=0.8), # top_p gr.Slider(0.0, 1.0, step=0.1, value=0.1), # presencePenalty gr.Slider(0.0, 1.0, step=0.1, value=0.1), # countPenalty ], outputs=gr.Textbox(label="生成的草稿", lines=28), description=description, examples=examples, api_key=api_key, ) demo = gr.TabbedInterface( [iface], ["分頁標籤"], title="Legal Document Drafting", ) demo.queue() demo.launch(share=False)