Spaces:
Runtime error
Runtime error
Julien Simon
commited on
Commit
·
21828aa
1
Parent(s):
aa315eb
Initial version
Browse files- app.py +90 -0
- requirements.txt +4 -0
- video.mp4 +3 -0
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import (BridgeTowerForImageAndTextRetrieval,
|
5 |
+
BridgeTowerProcessor)
|
6 |
+
|
7 |
+
model_id = "BridgeTower/bridgetower-large-itm-mlm"
|
8 |
+
processor = BridgeTowerProcessor.from_pretrained(model_id)
|
9 |
+
model = BridgeTowerForImageAndTextRetrieval.from_pretrained(model_id)
|
10 |
+
|
11 |
+
# Process a frame
|
12 |
+
def process_frame(image, texts):
|
13 |
+
scores = {}
|
14 |
+
texts = texts.split(",")
|
15 |
+
for t in texts:
|
16 |
+
encoding = processor(image, t, return_tensors="pt")
|
17 |
+
outputs = model(**encoding)
|
18 |
+
scores[t] = "{:.2f}".format(outputs.logits[0, 1].item())
|
19 |
+
# sort scores in descending order
|
20 |
+
scores = dict(sorted(scores.items(), key=lambda item: item[1], reverse=True))
|
21 |
+
return scores
|
22 |
+
|
23 |
+
|
24 |
+
# Process a video
|
25 |
+
def process(video, text, sample_rate, min_score):
|
26 |
+
video = cv2.VideoCapture(video)
|
27 |
+
fps = round(video.get(cv2.CAP_PROP_FPS))
|
28 |
+
frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
29 |
+
length = frames // fps
|
30 |
+
print(f"{fps} fps, {frames} frames, {length} seconds")
|
31 |
+
|
32 |
+
frame_count = 0
|
33 |
+
clips = []
|
34 |
+
clip_images = []
|
35 |
+
clip_started = False
|
36 |
+
while True:
|
37 |
+
ret, frame = video.read()
|
38 |
+
if not ret:
|
39 |
+
break
|
40 |
+
|
41 |
+
if frame_count % (fps * sample_rate) == 0:
|
42 |
+
frame = Image.fromarray(frame)
|
43 |
+
scores = process_frame(frame, text)
|
44 |
+
# print(f"{frame_count} {scores}")
|
45 |
+
|
46 |
+
if float(scores[text]) > min_score:
|
47 |
+
if clip_started:
|
48 |
+
end_time = frame_count / fps
|
49 |
+
else:
|
50 |
+
clip_started = True
|
51 |
+
start_time = frame_count / fps
|
52 |
+
end_time = start_time
|
53 |
+
clip_images.append(frame)
|
54 |
+
elif clip_started:
|
55 |
+
clip_started = False
|
56 |
+
end_time = frame_count / fps
|
57 |
+
clips.append((start_time, end_time))
|
58 |
+
frame_count += 1
|
59 |
+
return clip_images, clips
|
60 |
+
|
61 |
+
|
62 |
+
# Inputs
|
63 |
+
video = gr.Video(label="Video")
|
64 |
+
text = gr.Text(label="Text query")
|
65 |
+
sample_rate = gr.Number(default=2, label="Sample rate (1 frame every 'n' seconds)")
|
66 |
+
min_score = gr.Number(default=3, label="Minimum score")
|
67 |
+
|
68 |
+
# Output
|
69 |
+
gallery = gr.Gallery(label="Images")
|
70 |
+
clips = gr.Text(label="Clips")
|
71 |
+
|
72 |
+
description = "This Space lets you run semantic search on a video."
|
73 |
+
|
74 |
+
iface = gr.Interface(
|
75 |
+
description=description,
|
76 |
+
fn=process,
|
77 |
+
inputs=[video, text, sample_rate, min_score],
|
78 |
+
outputs=[gallery, clips],
|
79 |
+
examples=[
|
80 |
+
[
|
81 |
+
"video.mp4",
|
82 |
+
"wild bears",
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
]
|
86 |
+
],
|
87 |
+
allow_flagging="never",
|
88 |
+
)
|
89 |
+
|
90 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
Pillow
|
4 |
+
opencv-python
|
video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a77bb5024f5028f7b95c5a7b6fdf1a6bb2ee787a250f5cd2a12ee96bca970f4
|
3 |
+
size 11623402
|