File size: 4,667 Bytes
d32adcb
 
8b300d9
 
 
 
 
 
 
 
 
 
 
 
f3e34b0
 
 
 
 
 
 
a03fe94
 
 
f3e34b0
a03fe94
f3e34b0
 
cce1831
a03fe94
cce1831
 
f3e34b0
 
 
 
 
 
 
 
 
a03fe94
 
 
f3e34b0
 
 
 
 
a03fe94
f3e34b0
a03fe94
 
 
f3e34b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a8812
f3e34b0
12a8812
 
f3e34b0
 
2bf4a87
12a8812
f3e34b0
 
 
a03fe94
 
f3e34b0
 
 
 
 
 
 
 
a03fe94
f3e34b0
 
 
12a8812
f3e34b0
 
 
 
 
 
 
 
 
 
a03fe94
f3e34b0
 
 
12a8812
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt

from fromage import models
from fromage import utils
import gradio as gr
import huggingface_hub
import tempfile


# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(repo_id='jykoh/fromage', filename='pretrained_ckpt.pth.tar')
args_path = huggingface_hub.hf_hub_download(repo_id='jykoh/fromage', filename='model_args.json')
model = models.load_fromage('./', args_path, ckpt_path)


def upload_image(state, image_input):
    conversation = state[0]
    chat_history = state[1]
    conversation += [(f"![](/file={image_input.name})", "")]
    input_image = Image.open(image_input.name).resize((224, 224)).convert('RGB')
    return [conversation, chat_history, input_image], conversation


def reset():
    return [[], [], None], []


def save_image_to_local(image: Image.Image):
    # TODO(jykoh): Update so the url path is used, to prevent repeat saving.
    filename = next(tempfile._get_candidate_names()) + '.png'
    image.save(filename)
    return filename


def generate_for_prompt(input_text, state, ret_scale_factor, max_nm_rets, num_words, temperature):
    input_prompt = 'Q: ' + input_text + '\nA:'
    conversation = state[0]
    chat_history = state[1]
    input_image = state[2]
    print('Generating for', chat_history, flush=True)

    # If an image was uploaded, prepend it to the model.
    model_inputs = None
    if input_image is not None:
        model_inputs = chat_history + [input_image]
    else:
        model_inputs = chat_history

    model_inputs.append(input_prompt)

    top_p = 1.0
    if temperature != 0.0:
        top_p = 0.95

    print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
    model_outputs = model.generate_for_images_and_texts(model_inputs, 
        num_words=num_words, ret_scale_factor=ret_scale_factor, top_p=top_p,
        temperature=temperature, max_num_rets=max_nm_rets)
    print('model_outputs', model_outputs, flush=True)

    im_names = []
    response = ''
    text_outputs = []
    for output in model_outputs:
        if type(output) == str:
            text_outputs.append(output)
            response += output
        elif type(output) == list:
            for image in output:
                filename = save_image_to_local(image)
                response += f'<br/><img src="/file={filename}">'
        elif type(output) == Image.Image:
            filename = save_image_to_local(output)
            response += f'<br/><img src="/file={filename}">'

    # TODO(jykoh): Persist image inputs.
    chat_history = model_inputs + [' '.join([s for s in model_outputs if type(s) == str]) + '\n']
    conversation.append((input_text, response.replace('[RET]', '')))  # Remove [RET] from outputs.

    # Set input image to None.
    print('state', state, flush=True)
    print('updated state', [conversation, chat_history, None], flush=True)
    return [conversation, chat_history, None], conversation


with gr.Blocks() as demo:
    gr.Markdown(
        '### Grounding Language Models to Images for Multimodal Generation'
    )

    chatbot = gr.Chatbot()
    gr_state = gr.State([[], [], None])  # chat_history, input_image

    with gr.Row():
        with gr.Column(scale=0.3, min_width=0):
            ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True, label="Multiplier for returning images (higher means more frequent)")
            max_ret_images = gr.Number(minimum=0, maximum=3, value=1, precision=1, interactive=True, label="Max images to return")
            gr_max_len = gr.Number(value=32, precision=1, label="Max # of words returned", interactive=True)
            gr_temperature = gr.Number(value=0.0, label="Temperature", interactive=True)

        with gr.Column(scale=0.7, min_width=0):
            image_btn = gr.UploadButton("Image Input", file_types=["image"])     
            text_input = gr.Textbox(label="Text Input", lines=1, placeholder="Upload an image above [optional]. Then enter a text prompt, and press enter!")
            clear_btn = gr.Button("Clear History")

    text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor, max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot])
    text_input.submit(lambda: "", None, text_input)  # Reset chatbox.
    image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
    clear_btn.click(reset, [], [gr_state, chatbot])

# demo.launch(share=False, debug=True, server_name="0.0.0.0")
demo.queue(concurrency_count=5)
demo.launch(debug=True)