Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,245 Bytes
35e2073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
import shutil
import torch
import numpy as np
import argparse
import time
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "dust3r")))
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.device import to_numpy
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
# parser.add_argument("--model_path", type=str, default="./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", help="path to the model weights")
parser.add_argument("--model_path", type=str, default="submodules/dust3r/checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", help="path to the model weights")
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--schedule", type=str, default='linear')
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--niter", type=int, default=300)
parser.add_argument("--focal_avg", action="store_true")
# parser.add_argument("--focal_avg", type=bool, default=True)
parser.add_argument("--llffhold", type=int, default=2)
parser.add_argument("--n_views", type=int, default=12)
parser.add_argument("--img_base_path", type=str, default="/home/workspace/datasets/instantsplat/Tanks/Barn/24_views")
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
model_path = args.model_path
device = args.device
batch_size = args.batch_size
schedule = args.schedule
lr = args.lr
niter = args.niter
n_views = args.n_views
img_base_path = args.img_base_path
img_folder_path = os.path.join(img_base_path, "images")
os.makedirs(img_folder_path, exist_ok=True)
model = AsymmetricCroCo3DStereo.from_pretrained(model_path).to(device)
##########################################################################################################################################################################################
train_img_list = sorted(os.listdir(img_folder_path))
assert len(train_img_list)==n_views, f"Number of images ({len(train_img_list)}) in the folder ({img_folder_path}) is not equal to {n_views}"
# if len(os.listdir(img_folder_path)) != len(train_img_list):
# for img_name in train_img_list:
# src_path = os.path.join(img_base_path, "images", img_name)
# tgt_path = os.path.join(img_folder_path, img_name)
# print(src_path, tgt_path)
# shutil.copy(src_path, tgt_path)
images, ori_size = load_images(img_folder_path, size=512)
print("ori_size", ori_size)
start_time = time.time()
##########################################################################################################################################################################################
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, args.device, batch_size=batch_size)
output_colmap_path=img_folder_path.replace("images", "sparse/0")
os.makedirs(output_colmap_path, exist_ok=True)
scene = global_aligner(output, device=args.device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = compute_global_alignment(scene=scene, init="mst", niter=niter, schedule=schedule, lr=lr, focal_avg=args.focal_avg)
scene = scene.clean_pointcloud()
imgs = to_numpy(scene.imgs)
focals = scene.get_focals()
poses = to_numpy(scene.get_im_poses())
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
confidence_masks = to_numpy(scene.get_masks())
intrinsics = to_numpy(scene.get_intrinsics())
##########################################################################################################################################################################################
end_time = time.time()
print(f"Time taken for {n_views} views: {end_time-start_time} seconds")
# save
save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)])
color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)])
color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8)
storePly(os.path.join(output_colmap_path, "points3D.ply"), pts_4_3dgs, color_4_3dgs)
pts_4_3dgs_all = np.array(pts3d).reshape(-1, 3)
np.save(output_colmap_path + "/pts_4_3dgs_all.npy", pts_4_3dgs_all)
np.save(output_colmap_path + "/focal.npy", np.array(focals.cpu()))
|