Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,476 Bytes
35e2073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import math
import numpy as np
import torch
import torch.nn.functional as F
from typing import Tuple
from utils.stepfun import sample_np, sample
import scipy
def quad2rotation(q):
"""
Convert quaternion to rotation in batch. Since all operation in pytorch, support gradient passing.
Args:
quad (tensor, batch_size*4): quaternion.
Returns:
rot_mat (tensor, batch_size*3*3): rotation.
"""
# bs = quad.shape[0]
# qr, qi, qj, qk = quad[:, 0], quad[:, 1], quad[:, 2], quad[:, 3]
# two_s = 2.0 / (quad * quad).sum(-1)
# rot_mat = torch.zeros(bs, 3, 3).to(quad.get_device())
# rot_mat[:, 0, 0] = 1 - two_s * (qj**2 + qk**2)
# rot_mat[:, 0, 1] = two_s * (qi * qj - qk * qr)
# rot_mat[:, 0, 2] = two_s * (qi * qk + qj * qr)
# rot_mat[:, 1, 0] = two_s * (qi * qj + qk * qr)
# rot_mat[:, 1, 1] = 1 - two_s * (qi**2 + qk**2)
# rot_mat[:, 1, 2] = two_s * (qj * qk - qi * qr)
# rot_mat[:, 2, 0] = two_s * (qi * qk - qj * qr)
# rot_mat[:, 2, 1] = two_s * (qj * qk + qi * qr)
# rot_mat[:, 2, 2] = 1 - two_s * (qi**2 + qj**2)
# return rot_mat
if not isinstance(q, torch.Tensor):
q = torch.tensor(q).cuda()
norm = torch.sqrt(
q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3]
)
q = q / norm[:, None]
rot = torch.zeros((q.size(0), 3, 3)).to(q)
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
rot[:, 0, 0] = 1 - 2 * (y * y + z * z)
rot[:, 0, 1] = 2 * (x * y - r * z)
rot[:, 0, 2] = 2 * (x * z + r * y)
rot[:, 1, 0] = 2 * (x * y + r * z)
rot[:, 1, 1] = 1 - 2 * (x * x + z * z)
rot[:, 1, 2] = 2 * (y * z - r * x)
rot[:, 2, 0] = 2 * (x * z - r * y)
rot[:, 2, 1] = 2 * (y * z + r * x)
rot[:, 2, 2] = 1 - 2 * (x * x + y * y)
return rot
def get_camera_from_tensor(inputs):
"""
Convert quaternion and translation to transformation matrix.
"""
if not isinstance(inputs, torch.Tensor):
inputs = torch.tensor(inputs).cuda()
N = len(inputs.shape)
if N == 1:
inputs = inputs.unsqueeze(0)
# quad, T = inputs[:, :4], inputs[:, 4:]
# # normalize quad
# quad = F.normalize(quad)
# R = quad2rotation(quad)
# RT = torch.cat([R, T[:, :, None]], 2)
# # Add homogenous row
# homogenous_row = torch.tensor([0, 0, 0, 1]).cuda()
# RT = torch.cat([RT, homogenous_row[None, None, :].repeat(N, 1, 1)], 1)
# if N == 1:
# RT = RT[0]
# return RT
quad, T = inputs[:, :4], inputs[:, 4:]
w2c = torch.eye(4).to(inputs).float()
w2c[:3, :3] = quad2rotation(quad)
w2c[:3, 3] = T
return w2c
def quadmultiply(q1, q2):
"""
Multiply two quaternions together using quaternion arithmetic
"""
# Extract scalar and vector parts of the quaternions
w1, x1, y1, z1 = q1.unbind(dim=-1)
w2, x2, y2, z2 = q2.unbind(dim=-1)
# Calculate the quaternion product
result_quaternion = torch.stack(
[
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
],
dim=-1,
)
return result_quaternion
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
Source: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def rotation2quad(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
Source: https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
if not isinstance(matrix, torch.Tensor):
matrix = torch.tensor(matrix).cuda()
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def get_tensor_from_camera(RT, Tquad=False):
"""
Convert transformation matrix to quaternion and translation.
"""
# gpu_id = -1
# if type(RT) == torch.Tensor:
# if RT.get_device() != -1:
# gpu_id = RT.get_device()
# RT = RT.detach().cpu()
# RT = RT.numpy()
# from mathutils import Matrix
#
# R, T = RT[:3, :3], RT[:3, 3]
# rot = Matrix(R)
# quad = rot.to_quaternion()
# if Tquad:
# tensor = np.concatenate([T, quad], 0)
# else:
# tensor = np.concatenate([quad, T], 0)
# tensor = torch.from_numpy(tensor).float()
# if gpu_id != -1:
# tensor = tensor.to(gpu_id)
# return tensor
if not isinstance(RT, torch.Tensor):
RT = torch.tensor(RT).cuda()
rot = RT[:3, :3].unsqueeze(0).detach()
quat = rotation2quad(rot).squeeze()
tran = RT[:3, 3].detach()
return torch.cat([quat, tran])
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(lookdir, up, position, subtract_position=False):
"""Construct lookat view matrix."""
vec2 = normalize((lookdir - position) if subtract_position else lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def poses_avg(poses):
"""New pose using average position, z-axis, and up vector of input poses."""
position = poses[:, :3, 3].mean(0)
z_axis = poses[:, :3, 2].mean(0)
up = poses[:, :3, 1].mean(0)
cam2world = viewmatrix(z_axis, up, position)
return cam2world
def focus_point_fn(poses):
"""Calculate nearest point to all focal axes in poses."""
directions, origins = poses[:, :3, 2:3], poses[:, :3, 3:4]
m = np.eye(3) - directions * np.transpose(directions, [0, 2, 1])
mt_m = np.transpose(m, [0, 2, 1]) @ m
focus_pt = np.linalg.inv(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
return focus_pt
def pad_poses(p):
"""Pad [..., 3, 4] pose matrices with a homogeneous bottom row [0,0,0,1]."""
bottom = np.broadcast_to([0, 0, 0, 1.], p[..., :1, :4].shape)
return np.concatenate([p[..., :3, :4], bottom], axis=-2)
def unpad_poses(p):
"""Remove the homogeneous bottom row from [..., 4, 4] pose matrices."""
return p[..., :3, :4]
def transform_poses_pca(poses):
"""Transforms poses so principal components lie on XYZ axes.
Args:
poses: a (N, 3, 4) array containing the cameras' camera to world transforms.
Returns:
A tuple (poses, transform), with the transformed poses and the applied
camera_to_world transforms.
"""
t = poses[:, :3, 3]
t_mean = t.mean(axis=0)
t = t - t_mean
eigval, eigvec = np.linalg.eig(t.T @ t)
# Sort eigenvectors in order of largest to smallest eigenvalue.
inds = np.argsort(eigval)[::-1]
eigvec = eigvec[:, inds]
rot = eigvec.T
if np.linalg.det(rot) < 0:
rot = np.diag(np.array([1, 1, -1])) @ rot
transform = np.concatenate([rot, rot @ -t_mean[:, None]], -1)
poses_recentered = unpad_poses(transform @ pad_poses(poses))
transform = np.concatenate([transform, np.eye(4)[3:]], axis=0)
# Flip coordinate system if z component of y-axis is negative
if poses_recentered.mean(axis=0)[2, 1] < 0:
poses_recentered = np.diag(np.array([1, -1, -1])) @ poses_recentered
transform = np.diag(np.array([1, -1, -1, 1])) @ transform
# Just make sure it's it in the [-1, 1]^3 cube
scale_factor = 1. / np.max(np.abs(poses_recentered[:, :3, 3]))
poses_recentered[:, :3, 3] *= scale_factor
transform = np.diag(np.array([scale_factor] * 3 + [1])) @ transform
return poses_recentered, transform
def recenter_poses(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Recenter poses around the origin."""
cam2world = poses_avg(poses)
transform = np.linalg.inv(pad_poses(cam2world))
poses = transform @ pad_poses(poses)
return unpad_poses(poses), transform
def generate_ellipse_path(views, n_frames=600, const_speed=True, z_variation=0., z_phase=0.):
poses = []
for view in views:
tmp_view = np.eye(4)
tmp_view[:3] = np.concatenate([view.R.T, view.T[:, None]], 1)
tmp_view = np.linalg.inv(tmp_view)
tmp_view[:, 1:3] *= -1
poses.append(tmp_view)
poses = np.stack(poses, 0)
poses, transform = transform_poses_pca(poses)
# Calculate the focal point for the path (cameras point toward this).
center = focus_point_fn(poses)
# Path height sits at z=0 (in middle of zero-mean capture pattern).
offset = np.array([center[0] , center[1], 0 ])
# Calculate scaling for ellipse axes based on input camera positions.
sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0)
# Use ellipse that is symmetric about the focal point in xy.
low = -sc + offset
high = sc + offset
# Optional height variation need not be symmetric
z_low = np.percentile((poses[:, :3, 3]), 10, axis=0)
z_high = np.percentile((poses[:, :3, 3]), 90, axis=0)
def get_positions(theta):
# Interpolate between bounds with trig functions to get ellipse in x-y.
# Optionally also interpolate in z to change camera height along path.
return np.stack([
(low[0] + (high - low)[0] * (np.cos(theta) * .5 + .5)),
(low[1] + (high - low)[1] * (np.sin(theta) * .5 + .5)),
z_variation * (z_low[2] + (z_high - z_low)[2] *
(np.cos(theta + 2 * np.pi * z_phase) * .5 + .5)),
], -1)
theta = np.linspace(0, 2. * np.pi, n_frames + 1, endpoint=True)
positions = get_positions(theta)
if const_speed:
# Resample theta angles so that the velocity is closer to constant.
lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
theta = sample_np(None, theta, np.log(lengths), n_frames + 1)
positions = get_positions(theta)
# Throw away duplicated last position.
positions = positions[:-1]
# Set path's up vector to axis closest to average of input pose up vectors.
avg_up = poses[:, :3, 1].mean(0)
avg_up = avg_up / np.linalg.norm(avg_up)
ind_up = np.argmax(np.abs(avg_up))
up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up])
# up = normalize(poses[:, :3, 1].sum(0))
render_poses = []
for p in positions:
render_pose = np.eye(4)
render_pose[:3] = viewmatrix(p - center, up, p)
render_pose = np.linalg.inv(transform) @ render_pose
render_pose[:3, 1:3] *= -1
render_poses.append(np.linalg.inv(render_pose))
return render_poses
def generate_spiral_path(poses_arr,
n_frames: int = 180,
n_rots: int = 2,
zrate: float = .5) -> np.ndarray:
"""Calculates a forward facing spiral path for rendering."""
poses = poses_arr[:, :-2].reshape([-1, 3, 5])
bounds = poses_arr[:, -2:]
fix_rotation = np.array([
[0, -1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
], dtype=np.float32)
poses = poses[:, :3, :4] @ fix_rotation
scale = 1. / (bounds.min() * .75)
poses[:, :3, 3] *= scale
bounds *= scale
poses, transform = recenter_poses(poses)
close_depth, inf_depth = bounds.min() * .9, bounds.max() * 5.
dt = .75
focal = 1 / (((1 - dt) / close_depth + dt / inf_depth))
# Get radii for spiral path using 90th percentile of camera positions.
positions = poses[:, :3, 3]
radii = np.percentile(np.abs(positions), 90, 0)
radii = np.concatenate([radii, [1.]])
# Generate poses for spiral path.
render_poses = []
cam2world = poses_avg(poses)
up = poses[:, :3, 1].mean(0)
for theta in np.linspace(0., 2. * np.pi * n_rots, n_frames, endpoint=False):
t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.]
position = cam2world @ t
lookat = cam2world @ [0, 0, -focal, 1.]
z_axis = position - lookat
render_pose = np.eye(4)
render_pose[:3] = viewmatrix(z_axis, up, position)
render_pose = np.linalg.inv(transform) @ render_pose
render_pose[:3, 1:3] *= -1
render_pose[:3, 3] /= scale
render_poses.append(np.linalg.inv(render_pose))
render_poses = np.stack(render_poses, axis=0)
return render_poses
def generate_interpolated_path(
views,
n_interp,
spline_degree = 5,
smoothness = 0.03,
rot_weight = 0.1,
lock_up = False,
fixed_up_vector = None,
lookahead_i = None,
frames_per_colmap = None,
const_speed = False,
n_buffer = None,
periodic = False,
n_interp_as_total = False,
):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
lock_up: if True, forced to use given Up and allow Lookat to vary.
fixed_up_vector: replace the interpolated `up` with a fixed vector.
lookahead_i: force the look direction to look at the pose `i` frames ahead.
frames_per_colmap: conversion factor for the desired average velocity.
const_speed: renormalize spline to have constant delta between each pose.
n_buffer: Number of buffer frames to insert at the start and end of the
path. Helps keep the ends of a spline path straight.
periodic: make the spline path periodic (perfect loop).
n_interp_as_total: use n_interp as total number of poses in path rather than
the number of poses to interpolate between each input.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4), or
(n_interp, 3, 4) if n_interp_as_total is set.
"""
poses = []
for view in views:
tmp_view = np.eye(4)
tmp_view[:3] = np.concatenate([view.R.T, view.T[:, None]], 1)
tmp_view = np.linalg.inv(tmp_view)
tmp_view[:, 1:3] *= -1
poses.append(tmp_view)
poses = np.stack(poses, 0)
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
poses = []
for i in range(len(points)):
pos, lookat_point, up_point = points[i]
if lookahead_i is not None:
if i + lookahead_i < len(points):
lookat = pos - points[i + lookahead_i][0]
else:
lookat = pos - lookat_point
up = (up_point - pos) if fixed_up_vector is None else fixed_up_vector
poses.append(viewmatrix(lookat, up, pos))
return np.array(poses)
def insert_buffer_poses(poses, n_buffer):
"""Insert extra poses at the start and end of the path."""
def average_distance(points):
distances = np.linalg.norm(points[1:] - points[0:-1], axis=-1)
return np.mean(distances)
def shift(pose, dz):
result = np.copy(pose)
z = result[:3, 2]
z /= np.linalg.norm(z)
# Move along forward-backward axis. -z is forward.
result[:3, 3] += z * dz
return result
dz = average_distance(poses[:, :3, 3])
prefix = np.stack([shift(poses[0], (i + 1) * dz) for i in range(n_buffer)])
prefix = prefix[::-1] # reverse order
suffix = np.stack(
[shift(poses[-1], -(i + 1) * dz) for i in range(n_buffer)]
)
result = np.concatenate([prefix, poses, suffix])
return result
def remove_buffer_poses(poses, u, n_frames, u_keyframes, n_buffer):
u_keyframes = u_keyframes[n_buffer:-n_buffer]
mask = (u >= u_keyframes[0]) & (u <= u_keyframes[-1])
poses = poses[mask]
u = u[mask]
n_frames = len(poses)
return poses, u, n_frames, u_keyframes
def interp(points, u, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, u_keyframes = scipy.interpolate.splprep(pts.T, k=k, s=s, per=periodic)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (len(u), sh[1], sh[2]))
return new_points, u_keyframes
if n_buffer is not None:
poses = insert_buffer_poses(poses, n_buffer)
points = poses_to_points(poses, dist=rot_weight)
if n_interp_as_total:
n_frames = n_interp + 1 # Add extra since final pose is discarded.
else:
n_frames = n_interp * (points.shape[0] - 1)
u = np.linspace(0, 1, n_frames, endpoint=True)
new_points, u_keyframes = interp(points, u=u, k=spline_degree, s=smoothness)
poses = points_to_poses(new_points)
if n_buffer is not None:
poses, u, n_frames, u_keyframes = remove_buffer_poses(
poses, u, n_frames, u_keyframes, n_buffer
)
# poses, transform = transform_poses_pca(poses)
if frames_per_colmap is not None:
# Recalculate the number of frames to achieve desired average velocity.
positions = poses[:, :3, -1]
lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
total_length_colmap = lengths.sum()
print('old n_frames:', n_frames)
print('total_length_colmap:', total_length_colmap)
n_frames = int(total_length_colmap * frames_per_colmap)
print('new n_frames:', n_frames)
u = np.linspace(
np.min(u_keyframes), np.max(u_keyframes), n_frames, endpoint=True
)
new_points, _ = interp(points, u=u, k=spline_degree, s=smoothness)
poses = points_to_poses(new_points)
if const_speed:
# Resample timesteps so that the velocity is nearly constant.
positions = poses[:, :3, -1]
lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
u = sample(None, u, np.log(lengths), n_frames + 1)
new_points, _ = interp(points, u=u, k=spline_degree, s=smoothness)
poses = points_to_poses(new_points)
# return poses[:-1], u[:-1], u_keyframes
return poses[:-1]
|