File size: 13,021 Bytes
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f908eb9
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551f29f
 
 
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2c55f
35e2073
 
551f29f
 
 
 
 
 
 
 
 
 
 
 
 
35e2073
 
 
 
e5ccf22
35e2073
509f048
 
 
 
 
 
 
 
 
 
 
 
4aa11ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os, subprocess, shlex, sys, gc
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces

subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "dust3r")))
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.device import to_numpy
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images

from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from train_joint import training
from render_by_interp import render_sets
GRADIO_CACHE_FOLDER = './gradio_cache_folder'
#############################################################################################################################################


def get_dust3r_args_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
    parser.add_argument("--model_path", type=str, default="submodules/dust3r/checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", help="path to the model weights")
    parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--schedule", type=str, default='linear')
    parser.add_argument("--lr", type=float, default=0.01)
    parser.add_argument("--niter", type=int, default=300)
    parser.add_argument("--focal_avg", type=bool, default=True)
    parser.add_argument("--n_views", type=int, default=3)
    parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER) 
    return parser


@spaces.GPU(duration=150)
def process(inputfiles, input_path=None):

    if input_path is not None:
        imgs_path = './assets/example/' + input_path
        imgs_names = sorted(os.listdir(imgs_path))

        inputfiles = []
        for imgs_name in imgs_names:
            file_path = os.path.join(imgs_path, imgs_name)
            print(file_path)
            inputfiles.append(file_path)
        print(inputfiles)

    # ------ (1) Coarse Geometric Initialization ------
    # os.system(f"rm -rf {GRADIO_CACHE_FOLDER}")
    parser = get_dust3r_args_parser()
    opt = parser.parse_args()

    tmp_user_folder = str(uuid.uuid4()).replace("-", "")
    opt.img_base_path = os.path.join(opt.base_path, tmp_user_folder)
    img_folder_path = os.path.join(opt.img_base_path, "images")    

    img_folder_path = os.path.join(opt.img_base_path, "images")    
    model = AsymmetricCroCo3DStereo.from_pretrained(opt.model_path).to(opt.device)
    os.makedirs(img_folder_path, exist_ok=True)

    opt.n_views = len(inputfiles)  
    if opt.n_views == 1:
        raise gr.Error("The number of input images should be greater than 1.")
    print("Multiple images: ", inputfiles)
    for image_path in inputfiles:
        if input_path is not None:
            shutil.copy(image_path, img_folder_path)
        else:
            shutil.move(image_path, img_folder_path)
    train_img_list = sorted(os.listdir(img_folder_path))
    assert len(train_img_list)==opt.n_views, f"Number of images in the folder is not equal to {opt.n_views}"
    images, ori_size, imgs_resolution = load_images(img_folder_path, size=512) 
    resolutions_are_equal = len(set(imgs_resolution)) == 1
    if resolutions_are_equal == False:
        raise gr.Error("The resolution of the input image should be the same.")
    print("ori_size", ori_size)
    start_time = time.time()
    ######################################################
    pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)
    output = inference(pairs, model, opt.device, batch_size=opt.batch_size)
    output_colmap_path=img_folder_path.replace("images", "sparse/0")
    os.makedirs(output_colmap_path, exist_ok=True)

    scene = global_aligner(output, device=opt.device, mode=GlobalAlignerMode.PointCloudOptimizer)
    loss = compute_global_alignment(scene=scene, init="mst", niter=opt.niter, schedule=opt.schedule, lr=opt.lr, focal_avg=opt.focal_avg)
    scene = scene.clean_pointcloud()   

    imgs = to_numpy(scene.imgs)
    focals = scene.get_focals()
    poses = to_numpy(scene.get_im_poses())
    pts3d = to_numpy(scene.get_pts3d())
    scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
    confidence_masks = to_numpy(scene.get_masks())
    intrinsics = to_numpy(scene.get_intrinsics())
    ######################################################
    end_time = time.time()
    print(f"Time taken for {opt.n_views} views: {end_time-start_time} seconds")
    save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt'))
    save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list)
    pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)])
    color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)])
    color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8)
    storePly(os.path.join(output_colmap_path, "points3D.ply"), pts_4_3dgs, color_4_3dgs)
    pts_4_3dgs_all = np.array(pts3d).reshape(-1, 3)
    np.save(output_colmap_path + "/pts_4_3dgs_all.npy", pts_4_3dgs_all)
    np.save(output_colmap_path + "/focal.npy", np.array(focals.cpu()))

    ### save VRAM
    del scene
    torch.cuda.empty_cache()
    gc.collect()
    ##################################################################################################################################################

    # ------ (2) Fast 3D-Gaussian Optimization ------
    parser = ArgumentParser(description="Training script parameters")
    lp = ModelParams(parser)
    op = OptimizationParams(parser)
    pp = PipelineParams(parser)
    parser.add_argument('--debug_from', type=int, default=-1)
    parser.add_argument("--test_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--start_checkpoint", type=str, default = None)
    parser.add_argument("--scene", type=str, default="demo")
    parser.add_argument("--n_views", type=int, default=3)
    parser.add_argument("--get_video", action="store_true")
    parser.add_argument("--optim_pose", type=bool, default=True)
    parser.add_argument("--skip_train", action="store_true")
    parser.add_argument("--skip_test", action="store_true")
    args = parser.parse_args(sys.argv[1:])
    args.save_iterations.append(args.iterations)
    args.model_path = opt.img_base_path + '/output/'    
    args.source_path = opt.img_base_path
    # args.model_path = GRADIO_CACHE_FOLDER + '/output/'    
    # args.source_path = GRADIO_CACHE_FOLDER
    args.iteration = 1000
    os.makedirs(args.model_path, exist_ok=True)
    training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
    ##################################################################################################################################################

    # ------ (3) Render video by interpolation ------
    parser = ArgumentParser(description="Testing script parameters")
    model = ModelParams(parser, sentinel=True)
    pipeline = PipelineParams(parser)
    args.eval = True
    args.get_video = True
    args.n_views = opt.n_views
    render_sets(
        model.extract(args),
        args.iteration,
        pipeline.extract(args),
        args.skip_train,
        args.skip_test,
        args,
    )
    output_ply_path = opt.img_base_path + f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
    output_video_path = opt.img_base_path + f'/output/demo_{opt.n_views}_view.mp4'
    # output_ply_path = GRADIO_CACHE_FOLDER+ f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply'
    # output_video_path = GRADIO_CACHE_FOLDER+ f'/output/demo_{opt.n_views}_view.mp4'

    return  output_video_path, output_ply_path, output_ply_path
    ##################################################################################################################################################



_TITLE = '''InstantSplat'''
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
    <div style="width: 100%; text-align: center; font-size: 30px;">
        <strong>InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds</strong>
    </div>
</div> 
<p></p>

<div align="center">
    <a style="display:inline-block" href="https://instantsplat.github.io/"><img src='https://img.shields.io/badge/Project_Page-1c7d45?logo=gumtree'></a>&nbsp;
    <a style="display:inline-block" href="https://www.youtube.com/watch?v=fxf_ypd7eD8"><img src='https://img.shields.io/badge/Demo_Video-E33122?logo=Youtube'></a>&nbsp;
    <a style="display:inline-block" href="https://arxiv.org/abs/2403.20309"><img src="https://img.shields.io/badge/ArXiv-2403.20309-b31b1b?logo=arxiv" alt='arxiv'></a>
    <a title="Social" href="https://x.com/KairunWen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
    </a>
</div>
<p></p>

* Official demo of: [InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds](https://instantsplat.github.io/).
* Sparse-view examples for direct viewing: you can simply click the examples (in the bottom of the page), to quickly view the results on representative data.
* Training speeds may slow if the resolution or number of images is large. To achieve performance comparable to what has been reported, please conduct tests on your own GPU (A100/4090).
'''


    # <a style="display:inline-block" href="https://github.com/VITA-Group/LightGaussian"><img src="https://img.shields.io/badge/Source_Code-black?logo=Github" alt='Github Source Code'></a>&nbsp;
# &nbsp;
#     <a style="display:inline-block" href="https://www.nvidia.com/en-us/"><img src="https://img.shields.io/badge/Nvidia-575757?logo=nvidia" alt='Nvidia'></a>
# * If InstantSplat is helpful, please give us a star ⭐ on Github. Thanks! <a style="display:inline-block; margin-left: .5em" href="https://github.com/VITA-Group/LightGaussian"><img src='https://img.shields.io/github/stars/VITA-Group/LightGaussian?style=social'/></a>


# block = gr.Blocks(title=_TITLE).queue()
block = gr.Blocks().queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            # gr.Markdown('# ' + _TITLE)
            gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Tab("Input"):
            inputfiles = gr.File(file_count="multiple", label="images")
            input_path = gr.Textbox(visible=False, label="example_path")
            button_gen = gr.Button("RUN")

    with gr.Row(variant='panel'):
        with gr.Tab("Output"):
            with gr.Column(scale=2):
                with gr.Group():
                    output_model = gr.Model3D(
                        label="3D Dense Model under Gaussian Splats Formats, need more time to visualize",
                        interactive=False,
                        camera_position=[0.5, 0.5, 1],  # 稍微偏移一点,以便更好地查看模型
                    )
                    gr.Markdown(
                        """
                        <div class="model-description">
                           &nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
                        </div>
                        """
                    )    
                output_file = gr.File(label="ply")
            with gr.Column(scale=1):
                output_video = gr.Video(label="video")
                
    button_gen.click(process, inputs=[inputfiles], outputs=[output_video, output_file, output_model])
    
    gr.Examples(
        examples=[
            "sora-santorini-3-views",
            # "TT-family-3-views",
            # "dl3dv-ba55-3-views",
        ],
        inputs=[input_path],
        outputs=[output_video, output_file, output_model],
        fn=lambda x: process(inputfiles=None, input_path=x),
        cache_examples=True,
        label='Sparse-view Examples'
    )
block.launch(server_name="0.0.0.0", share=False)