File size: 95,932 Bytes
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
![Alt](./doc/manual/logo-mini.png "GLM Logo")

# GLM 0.9.9 Manual

![Alt](./doc/manual/g-truc.png "G-Truc Logo")

---
<div style="page-break-after: always;"> </div>

## Table of Contents

+ [0. Licenses](#section0)
+ [1. Getting started](#section1)
+ [1.1. Using global headers](#section1_1)
+ [1.2. Using separated headers](#section1_2)
+ [1.3. Using extension headers](#section1_3)
+ [1.4. Dependencies](#section1_4)
+ [1.5. Finding GLM with CMake](#section1_5)
+ [2. Preprocessor configurations](#section2)
+ [2.1. GLM\_FORCE\_MESSAGES: Platform auto detection and default configuration](#section2_1)
+ [2.2. GLM\_FORCE\_PLATFORM\_UNKNOWN: Force GLM to no detect the build platform](#section2_2)
+ [2.3. GLM\_FORCE\_COMPILER\_UNKNOWN: Force GLM to no detect the C++ compiler](#section2_3)
+ [2.4. GLM\_FORCE\_ARCH\_UNKNOWN: Force GLM to no detect the build architecture](#section2_4)
+ [2.5. GLM\_FORCE\_CXX\_UNKNOWN: Force GLM to no detect the C++ standard](#section2_5)
+ [2.6. GLM\_FORCE\_CXX**: C++ language detection](#section2_6)
+ [2.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions](#section2_7)
+ [2.8. GLM\_FORCE\_INLINE: Force inline](#section2_8)
+ [2.9. GLM\_FORCE\_ALIGNED\_GENTYPES: Force GLM to enable aligned types](#section2_9)
+ [2.10. GLM\_FORCE\_DEFAULT\_ALIGNED\_GENTYPES: Force GLM to use aligned types by default](#section2_10)
+ [2.11. GLM\_FORCE\_INTRINSICS: Using SIMD optimizations](#section2_11)
+ [2.12. GLM\_FORCE\_PRECISION\_**: Default precision](#section2_12)
+ [2.13. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types](#section2_13)
+ [2.14. GLM\_FORCE\_SWIZZLE: Enable swizzle operators](#section2_14)
+ [2.15. GLM\_FORCE\_XYZW\_ONLY: Only exposes x, y, z and w components](#section2_15)
+ [2.16. GLM\_FORCE\_LEFT\_HANDED: Force left handed coordinate system](#section2_16)
+ [2.17. GLM\_FORCE\_DEPTH\_ZERO\_TO\_ONE: Force the use of a clip space between 0 to 1](#section2_17)
+ [2.18. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size type](#section2_18)
+ [2.19. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction](#section2_19)
+ [2.20. GLM\_FORCE\_SILENT\_WARNINGS: Silent C++ warnings from language extensions](#section2_20)
+ [2.21. GLM\_FORCE\_QUAT\_DATA\_WXYZ: Force GLM to store quat data as w,x,y,z instead of x,y,z,w](#section2_21)
+ [3. Stable extensions](#section3)
+ [3.1. Scalar types](#section3_1)
+ [3.2. Scalar functions](#section3_2)
+ [3.3. Vector types](#section3_3)
+ [3.4. Vector types with precision qualifiers](#section3_4)
+ [3.5. Vector functions](#section3_5)
+ [3.6. Matrix types](#section3_6)
+ [3.7. Matrix types with precision qualifiers](#section3_7)
+ [3.8. Matrix functions](#section3_8)
+ [3.9. Quaternion types](#section3_9)
+ [3.10. Quaternion types with precision qualifiers](#section3_10)
+ [3.11. Quaternion functions](#section3_11)
+ [4. Recommended extensions](#section4)
+ [4.1. GLM_GTC_bitfield](#section4_1)
+ [4.2. GLM_GTC_color_space](#section4_2)
+ [4.3. GLM_GTC_constants](#section4_3)
+ [4.4. GLM_GTC_epsilon](#section4_4)
+ [4.5. GLM_GTC_integer](#section4_5)
+ [4.6. GLM_GTC_matrix_access](#section4_6)
+ [4.7. GLM_GTC_matrix_integer](#section4_7)
+ [4.8. GLM_GTC_matrix_inverse](#section4_8)
+ [4.9. GLM_GTC_matrix_transform](#section4_9)
+ [4.10. GLM_GTC_noise](#section4_10)
+ [4.11. GLM_GTC_packing](#section4_11)
+ [4.12. GLM_GTC_quaternion](#section4_12)
+ [4.13. GLM_GTC_random](#section4_13)
+ [4.14. GLM_GTC_reciprocal](#section4_14)
+ [4.15. GLM_GTC_round](#section4_15)
+ [4.16. GLM_GTC_type_alignment](#section4_16)
+ [4.17. GLM_GTC_type_precision](#section4_17)
+ [4.18. GLM_GTC_type_ptr](#section4_18)
+ [4.19. GLM_GTC_ulp](#section4_19)
+ [4.20. GLM_GTC_vec1](#section4_20)
+ [5. OpenGL interoperability](#section5)
+ [5.1. GLM Replacements for deprecated OpenGL functions](#section5_1)
+ [5.2. GLM Replacements for GLU functions](#section5_2)
+ [6. Known issues](#section6)
+ [6.1. Not function](#section6_1)
+ [6.2. Precision qualifiers support](#section6_2)
+ [7. FAQ](#section7)
+ [7.1 Why GLM follows GLSL specification and conventions?](#section7_1)
+ [7.2. Does GLM run GLSL programs?](#section7_2)
+ [7.3. Does a GLSL compiler build GLM codes?](#section7_3)
+ [7.4. Should I use ‘GTX’ extensions?](#section7_4)
+ [7.5. Where can I ask my questions?](#section7_5)
+ [7.6. Where can I find the documentation of extensions?](#section7_6)
+ [7.7. Should I use 'using namespace glm;'?](#section7_7)
+ [7.8. Is GLM fast?](#section7_8)
+ [7.9. When I build with Visual C++ with /w4 warning level, I have warnings...](#section7_9)
+ [7.10. Why some GLM functions can crash because of division by zero?](#section7_10)
+ [7.11. What unit for angles us used in GLM?](#section7_11)
+ [7.12. Windows headers cause build errors...](#section7_12)
+ [7.13. Constant expressions support](#section7_13)
+ [8. Code samples](#section8)
+ [8.1. Compute a triangle normal](#section8_1)
+ [8.2. Matrix transform](#section8_2)
+ [8.3. Vector types](#section8_3)
+ [8.4. Lighting](#section8_4)
+ [9. Contributing to GLM](#section9)
+ [9.1. Submitting bug reports](#section9_1)
+ [9.2. Contributing to GLM with pull request](#section9_2)
+ [9.3. Coding style](#section9_3)
+ [10. References](#section10)
+ [10.1. OpenGL specifications](#section10_1)
+ [10.2. External links](#section10_2)
+ [10.3. Projects using GLM](#section10_3)
+ [10.4. Tutorials using GLM](#section10_4)
+ [10.5. Equivalent for other languages](#section10_5)
+ [10.6. Alternatives to GLM](#section10_6)
+ [10.7. Acknowledgements](#section10_7)

---
<div style="page-break-after: always;"> </div>

## <a name="section0"></a> Licenses

### The Happy Bunny License (Modified MIT License)

Copyright (c) 2005 - G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Restrictions: By making use of the Software for military purposes, you
choose to make a Bunny unhappy.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

![](./doc/manual/frontpage1.png)

### The MIT License

Copyright (c) 2005 - G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

![](./doc/manual/frontpage2.png)

---
<div style="page-break-after: always;"> </div>

## <a name="section1"></a> 1. Getting started

### <a name="section1_1"></a> 1.1. Using global headers

GLM is a header-only library, and thus does not need to be compiled. We can use GLM's implementation of GLSL's mathematics functionality by including the `<glm/glm.hpp>` header:

```cpp
#include <glm/glm.hpp>
```

To extend the feature set supported by GLM and keeping the library as close to GLSL as possible, new features are implemented as extensions that can be included thought a separated header:

```cpp
// Include all GLM core / GLSL features
#include <glm/glm.hpp> // vec2, vec3, mat4, radians

// Include all GLM extensions
#include <glm/ext.hpp> // perspective, translate, rotate

glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
    glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
    glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
    glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
    glm::mat4 Model = glm::mat4(1.0f);
    return Proj * View * Model;
}
```

*Note: Including `<glm/glm.hpp>` and `<glm/ext.hpp>` is convenient but pull a lot of code which will significantly increase build time, particularly if these files are included in all source files. We may prefer to use the approaches describe in the two following sections to keep the project build fast.*

### <a name="section1_2"></a> 1.2. Using separated headers

GLM relies on C++ templates heavily, and may significantly increase compilation times for projects that use it. Hence, user projects could only include the features they actually use. Following is the list of all the core features, based on GLSL specification, headers:

```cpp
#include <glm/vec2.hpp>               // vec2, bvec2, dvec2, ivec2 and uvec2
#include <glm/vec3.hpp>               // vec3, bvec3, dvec3, ivec3 and uvec3
#include <glm/vec4.hpp>               // vec4, bvec4, dvec4, ivec4 and uvec4
#include <glm/mat2x2.hpp>             // mat2, dmat2
#include <glm/mat2x3.hpp>             // mat2x3, dmat2x3
#include <glm/mat2x4.hpp>             // mat2x4, dmat2x4
#include <glm/mat3x2.hpp>             // mat3x2, dmat3x2
#include <glm/mat3x3.hpp>             // mat3, dmat3
#include <glm/mat3x4.hpp>             // mat3x4, dmat2
#include <glm/mat4x2.hpp>             // mat4x2, dmat4x2
#include <glm/mat4x3.hpp>             // mat4x3, dmat4x3
#include <glm/mat4x4.hpp>             // mat4, dmat4
#include <glm/common.hpp>             // all the GLSL common functions: abs, min, mix, isnan, fma, etc.
#include <glm/exponential.hpp>        // all the GLSL exponential functions: pow, log, exp2, sqrt, etc.
#include <glm/geometric.hpp>          // all the GLSL geometry functions: dot, cross, reflect, etc.
#include <glm/integer.hpp>            // all the GLSL integer functions: findMSB, bitfieldExtract, etc.
#include <glm/matrix.hpp>             // all the GLSL matrix functions: transpose, inverse, etc.
#include <glm/packing.hpp>            // all the GLSL packing functions: packUnorm4x8, unpackHalf2x16, etc.
#include <glm/trigonometric.hpp>      // all the GLSL trigonometric functions: radians, cos, asin, etc.
#include <glm/vector_relational.hpp>  // all the GLSL vector relational functions: equal, less, etc.
```

The following is a code sample using separated core headers and an extension:

```cpp
// Include GLM core features
#include <glm/vec2.hpp>           // vec2
#include <glm/vec3.hpp>           // vec3
#include <glm/mat4x4.hpp>         // mat4
#include <glm/trigonometric.hpp>  //radians

// Include GLM extension
#include <glm/ext/matrix_transform.hpp> // perspective, translate, rotate

glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
    glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
    glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
    glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
    glm::mat4 Model = glm::mat4(1.0f);
    return Proj * View * Model;
}
```

### <a name="section1_3"></a> 1.3. Using extension headers

Using GLM through split headers to minimize the project build time:

```cpp
// Include GLM vector extensions:
#include <glm/ext/vector_float2.hpp>                // vec2
#include <glm/ext/vector_float3.hpp>                // vec3
#include <glm/ext/vector_trigonometric.hpp>         // radians

// Include GLM matrix extensions:
#include <glm/ext/matrix_float4x4.hpp>              // mat4
#include <glm/ext/matrix_transform.hpp>             // perspective, translate, rotate

glm::mat4 transform(glm::vec2 const& Orientation, glm::vec3 const& Translate, glm::vec3 const& Up)
{
    glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
    glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
    glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
    glm::mat4 Model = glm::mat4(1.0f);
    return Proj * View * Model;
}
```

### <a name="section1_4"></a> 1.4. Dependencies

GLM does not depend on external libraries or headers such as `<GL/gl.h>`, [`<GL/glcorearb.h>`](http://www.opengl.org/registry/api/GL/glcorearb.h), `<GLES3/gl3.h>`, `<GL/glu.h>`, or `<windows.h>`.

### <a name="section1_5"></a> 1.5. Finding GLM with CMake

When installed, GLM provides the CMake package configuration files `glmConfig.cmake` and `glmConfigVersion.cmake`.

To use these configurations files, you may need to set the `glm_DIR` variable to the directory containing the configuration files `<installation prefix>/lib/cmake/glm/`.

Use the `find_package` CMake command to load the configurations into your project. Lastly, either link your executable against the `glm::glm` target or add `${GLM_INCLUDE_DIRS}` to your target's include directories:

```cmake
set(glm_DIR <installation prefix>/lib/cmake/glm) # if necessary
find_package(glm REQUIRED)
target_link_libraries(<your executable> glm::glm)
```

To use GLM as a submodule in a project instead, use `add_subdirectory` to expose the same target, or add the directory to your target's

```cmake
add_subdirectory(glm)
target_link_libraries(<your executable> glm::glm)
# or
target_include_directories(<your executable> glm)
```

---
<div style="page-break-after: always;"> </div>

## <a name="section2"></a> 2. Preprocessor configurations

### <a name="section2_1"></a> 2.1. GLM\_FORCE\_MESSAGES: Platform auto detection and default configuration

When included, GLM will first automatically detect the compiler used, the C++ standard supported, the compiler arguments used to configure itself matching the build environment.

For example, if the compiler arguments request AVX code generation, GLM will rely on its code path providing AVX optimizations when available.

We can change GLM configuration using specific C++ preprocessor defines that must be declared before including any GLM headers.

Using `GLM_FORCE_MESSAGES`, GLM will report the configuration as part of the build log.

```cpp
#define GLM_FORCE_MESSAGES // Or defined when building (e.g. -DGLM_FORCE_SWIZZLE)
#include <glm/glm.hpp>
```

Example of configuration log generated by `GLM_FORCE_MESSAGES`:

```plaintext
GLM: version 0.9.9.1
GLM: C++ 17 with extensions
GLM: Clang compiler detected
GLM: x86 64 bits with AVX instruction set build target
GLM: Linux platform detected
GLM: GLM_FORCE_SWIZZLE is undefined. swizzling functions or operators are disabled.
GLM: GLM_FORCE_SIZE_T_LENGTH is undefined. .length() returns a glm::length_t, a typedef of int following GLSL.
GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is undefined. Follows strictly GLSL on valid function genTypes.
GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is undefined. Using negative one to one depth clip space.
GLM: GLM_FORCE_LEFT_HANDED is undefined. Using right handed coordinate system.
```

The following subsections describe each configurations and defines.

### <a name="section2_2"></a> 2.2. GLM\_FORCE\_PLATFORM\_UNKNOWN: Force GLM to no detect the build platform

`GLM_FORCE_PLATFORM_UNKNOWN` prevents GLM from detecting the build platform.

### <a name="section2_3"></a> 2.3. GLM\_FORCE\_COMPILER\_UNKNOWN: Force GLM to no detect the C++ compiler

`GLM_FORCE_COMPILER_UNKNOWN` prevents GLM from detecting the C++ compiler.

### <a name="section2_4"></a> 2.4. GLM\_FORCE\_ARCH\_UNKNOWN: Force GLM to no detect the build architecture

`GLM_FORCE_ARCH_UNKNOWN` prevents GLM from detecting the build target architecture.

### <a name="section2_5"></a> 2.5. GLM\_FORCE\_CXX\_UNKNOWN: Force GLM to no detect the C++ standard

`GLM_FORCE_CSS_UNKNOWN` prevents GLM from detecting the C++ compiler standard support.

### <a name="section2_6"></a> 2.6. GLM\_FORCE\_CXX**: C++ language detection

GLM will automatically take advantage of compilers’ language extensions when enabled. To increase cross platform compatibility and to avoid compiler extensions, a programmer can define `GLM_FORCE_CXX98` before
any inclusion of `<glm/glm.hpp>` to restrict the language feature set C++98:

```cpp
#define GLM_FORCE_CXX98
#include <glm/glm.hpp>
```

For C++11, C++14, and C++17 equivalent defines are available:

* `GLM_FORCE_CXX11`
* `GLM_FORCE_CXX14`
* `GLM_FORCE_CXX17`

```cpp
#define GLM_FORCE_CXX11
#include <glm/glm.hpp>

// If the compiler doesn’t support C++11, compiler errors will happen.
```

`GLM_FORCE_CXX17` overrides `GLM_FORCE_CXX14`; `GLM_FORCE_CXX14` overrides `GLM_FORCE_CXX11`; and `GLM_FORCE_CXX11` overrides `GLM_FORCE_CXX98` defines.

### <a name="section2_7"></a> 2.7. GLM\_FORCE\_EXPLICIT\_CTOR: Requiring explicit conversions

GLSL supports implicit conversions of vector and matrix types. For example, an ivec4 can be implicitly converted into `vec4`.

Often, this behaviour is not desirable but following the spirit of the library, this is the default behavior in GLM. However, GLM 0.9.6 introduced the define `GLM_FORCE_EXPLICIT_CTOR` to require explicit conversion for GLM types.

```cpp
#include <glm/glm.hpp>

void foo()
{
    glm::ivec4 a;
    ...

    glm::vec4 b(a); // Explicit conversion, OK
    glm::vec4 c = a; // Implicit conversion, OK
    ...
}
```

With `GLM_FORCE_EXPLICIT_CTOR` define, implicit conversions are not allowed:

```cpp
#define GLM_FORCE_EXPLICIT_CTOR
#include <glm/glm.hpp>

void foo()
{
    glm::ivec4 a;
    {
        glm::vec4 b(a); // Explicit conversion, OK
        glm::vec4 c = a; // Implicit conversion, ERROR
        ...
}
```

### <a name="section2_8"></a> 2.8. GLM\_FORCE\_INLINE: Force inline

To push further the software performance, a programmer can define `GLM_FORCE_INLINE` before any inclusion of `<glm/glm.hpp>` to force the compiler to inline GLM code.

```cpp
#define GLM_FORCE_INLINE
#include <glm/glm.hpp>
```

### <a name="section2_9"></a> 2.9. GLM\_FORCE\_ALIGNED\_GENTYPES: Force GLM to enable aligned types

Every object type has the property called alignment requirement, which is an integer value (of type `std::size_t`, always a power of 2) representing the number of bytes between successive addresses at which objects of this type can be allocated. The alignment requirement of a type can be queried with alignof or `std::alignment_of`. The pointer alignment function `std::align` can be used to obtain a suitably-aligned pointer within some buffer, and `std::aligned_storage` can be used to obtain suitably-aligned storage.

Each object type imposes its alignment requirement on every object of that type; stricter alignment (with larger alignment requirement) can be requested using C++11 `alignas`.

In order to satisfy alignment requirements of all non-static members of a class, padding may be inserted after some of its members.

GLM supports both packed and aligned types. Packed types allow filling data structure without inserting extra padding. Aligned GLM types align addresses based on the size of the value type of a GLM type.

```cpp
#define GLM_FORCE_ALIGNED_GENTYPES
#include <glm/glm.hpp>
#include <glm/gtc/type_aligned.hpp>

typedef glm::aligned_vec4 vec4a;
typedef glm::packed_vec4 vec4p;
```

### <a name="section2_10"></a> 2.10. GLM\_FORCE\_DEFAULT\_ALIGNED\_GENTYPES: Force GLM to use aligned types by default

GLM allows using aligned types by default for vector types using `GLM_FORCE_DEFAULT_ALIGNED_GENTYPES`:

```cpp
#define GLM_FORCE_DEFAULT_ALIGNED_GENTYPES
#include <glm/glm.hpp>

struct MyStruct
{
    glm::vec4 a;
    float b;
    glm::vec3 c;
};

void foo()
{
    printf("MyStruct requires memory padding: %d bytes\n", sizeof(MyStruct));
}

>>> MyStruct requires memory padding: 48 bytes
```

```cpp
#include <glm/glm.hpp>

struct MyStruct
{
    glm::vec4 a;
    float b;
    glm::vec3 c;
};

void foo()
{
    printf("MyStruct is tightly packed: %d bytes\n", sizeof(MyStruct));
}

>>> MyStruct is tightly packed: 32 bytes
```

*Note: GLM SIMD optimizations require the use of aligned types*

### <a name="section2_11"></a> 2.11. GLM\_FORCE\_INTRINSICS: Using SIMD optimizations

GLM provides some SIMD optimizations based on [compiler intrinsics](https://msdn.microsoft.com/en-us/library/26td21ds.aspx).
These optimizations will be automatically thanks to compiler arguments when `GLM_FORCE_INTRINSICS` is defined before including GLM files.
For example, if a program is compiled with Visual Studio using `/arch:AVX`, GLM will detect this argument and generate code using AVX instructions automatically when available.

It’s possible to avoid the instruction set detection by forcing the use of a specific instruction set with one of the fallowing define:
`GLM_FORCE_SSE2`, `GLM_FORCE_SSE3`, `GLM_FORCE_SSSE3`, `GLM_FORCE_SSE41`, `GLM_FORCE_SSE42`, `GLM_FORCE_AVX`, `GLM_FORCE_AVX2` or `GLM_FORCE_AVX512`.

The use of intrinsic functions by GLM implementation can be avoided using the define `GLM_FORCE_PURE` before any inclusion of GLM headers. This can be particularly useful if we want to rely on C++14 `constexpr`.

```cpp
#define GLM_FORCE_PURE
#include <glm/glm.hpp>

static_assert(glm::vec4::length() == 4, "Using GLM C++ 14 constexpr support for compile time tests");

// GLM code will be compiled using pure C++ code without any intrinsics
```

```cpp
#define GLM_FORCE_SIMD_AVX2
#include <glm/glm.hpp>

// If the compiler doesn’t support AVX2 instrinsics, compiler errors will happen.
```

Additionally, GLM provides a low level SIMD API in glm/simd directory for users who are really interested in writing fast algorithms.

### <a name="section2_12"></a> 2.12. GLM\_FORCE\_PRECISION\_**: Default precision

C++ does not provide a way to implement GLSL default precision selection (as defined in GLSL 4.10 specification section 4.5.3) with GLSL-like syntax.

```glsl
precision mediump int;
precision highp float;
```

To use the default precision functionality, GLM provides some defines that need to added before any include of `glm.hpp`:

```cpp
#define GLM_FORCE_PRECISION_MEDIUMP_INT
#define GLM_FORCE_PRECISION_HIGHP_FLOAT
#include <glm/glm.hpp>
```

Available defines for floating point types (`glm::vec\*`, `glm::mat\*`):

* `GLM_FORCE_PRECISION_LOWP_FLOAT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_FLOAT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_FLOAT`: High precision (default)

Available defines for floating point types (`glm::dvec\*`, `glm::dmat\*`):

* `GLM_FORCE_PRECISION_LOWP_DOUBLE`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_DOUBLE`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_DOUBLE`: High precision (default)

Available defines for signed integer types (`glm::ivec\*`):

* `GLM_FORCE_PRECISION_LOWP_INT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_INT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_INT`: High precision (default)

Available defines for unsigned integer types (`glm::uvec\*`):

* `GLM_FORCE_PRECISION_LOWP_UINT`: Low precision
* `GLM_FORCE_PRECISION_MEDIUMP_UINT`: Medium precision
* `GLM_FORCE_PRECISION_HIGHP_UINT`: High precision (default)

### <a name="section2_13"></a> 2.13. GLM\_FORCE\_SINGLE\_ONLY: Removed explicit 64-bits floating point types

Some platforms (Dreamcast) doesn't support double precision floating point values. To compile on such platforms, GCC has the `--m4-single-only` build argument. When defining `GLM_FORCE_SINGLE_ONLY` before including GLM headers, GLM releases the requirement of double precision floating point values support. Effectivement, all the float64 types are no longer defined and double behaves like float.

### <a name="section2_14"></a> 2.14. GLM\_FORCE\_SWIZZLE: Enable swizzle operators

Shader languages like GLSL often feature so-called swizzle expressions, which may be used to freely select and arrange a vector's components. For example, `variable.x`, `variable.xzy` and `variable.zxyy` respectively form a scalar, a 3D vector and a 4D vector.  The result of a swizzle expression in GLSL can be either an R-value or an L-value. Swizzle expressions can be written with characters from exactly one of `xyzw` (usually for positions), `rgba` (usually for colors), and `stpq` (usually for texture coordinates).

```glsl
vec4 A;
vec2 B;

B.yx = A.wy;
B = A.xx;
vec3 C = A.bgr;
vec3 D = B.rsz; // Invalid, won't compile
```

GLM supports some of this functionality. Swizzling can be enabled by defining `GLM_FORCE_SWIZZLE`.

*Note: Enabling swizzle expressions will massively increase the size of your binaries and the time it takes to compile them!*

GLM has two levels of swizzling support described in the following subsections.

#### 2.14.1. Swizzle functions for standard C++ 98

When compiling GLM as C++98, R-value swizzle expressions are simulated through member functions of each vector type.

```cpp
#define GLM_FORCE_SWIZZLE // Or defined when building (e.g. -DGLM_FORCE_SWIZZLE)
#include <glm/glm.hpp>

void foo()
{
    glm::vec4 const ColorRGBA = glm::vec4(1.0f, 0.5f, 0.0f, 1.0f);
    glm::vec3 const ColorBGR = ColorRGBA.bgr();

    glm::vec3 const PositionA = glm::vec3(1.0f, 0.5f, 0.0f);
    glm::vec3 const PositionB = PositionXYZ.xyz() * 2.0f;

    glm::vec2 const TexcoordST = glm::vec2(1.0f, 0.5f);
    glm::vec4 const TexcoordSTPQ = TexcoordST.stst();
}
```

Swizzle operators return a **copy** of the component values, and thus *can't* be used as L-values to change a vector's values.

```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

void foo()
{
  glm::vec3 const A = glm::vec3(1.0f, 0.5f, 0.0f);

  // No compiler error, but A is not modified.
  // An anonymous copy is being modified (and then discarded).
  A.bgr() = glm::vec3(2.0f, 1.5f, 1.0f); // A is not modified!
}
```

#### 2.14.2. Swizzle operations for C++ 98 with language extensions

Visual C++, GCC and Clang support, as a _non-standard language extension_, anonymous `struct`s as `union` members. This permits a powerful swizzling implementation that both allows L-value swizzle expressions and GLSL-like syntax. To use this feature, the language extension must be enabled by a supporting compiler and `GLM_FORCE_SWIZZLE` must be `#define`d.

```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

// Only guaranteed to work with Visual C++!
// Some compilers that support Microsoft extensions may compile this.
void foo()
{
  glm::vec4 ColorRGBA = glm::vec4(1.0f, 0.5f, 0.0f, 1.0f);

  // l-value:
  glm::vec4 ColorBGRA = ColorRGBA.bgra;

  // r-value:
  ColorRGBA.bgra = ColorRGBA;

  // Both l-value and r-value
  ColorRGBA.bgra = ColorRGBA.rgba;
}
```

This version returns implementation-specific objects that _implicitly convert_ to their respective vector types.  As a consequence of this design, these extra types **can't be directly used** as C++ function arguments; they must be converted through constructors or `operator()`.

```cpp
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

using namespace glm;

void foo()
{
  vec4 Color = vec4(1.0f, 0.5f, 0.0f, 1.0f);

  // Generates compiler errors. Color.rgba is not a vector type.
  vec4 ClampedA = clamp(Color.rgba, 0.f, 1.f); // ERROR

  // Explicit conversion through a constructor
  vec4 ClampedB = clamp(vec4(Color.rgba), 0.f, 1.f); // OK

  // Explicit conversion through operator()
  vec4 ClampedC = clamp(Color.rgba(), 0.f, 1.f); // OK
}
```

*Note: The implementation has a caveat: Swizzle operator types must be different on both size of the equal operator or the operation will fail. There is no known fix for this issue to date*

### <a name="section2_15"></a> 2.15. GLM\_FORCE\_XYZW\_ONLY: Only exposes x, y, z and w components

Following GLSL specifications, GLM supports three sets of components to access vector types member: x, y, z, w; r, g, b, a; and s, t, p, q.
Also, this is making vector component very expressive in the code, it may make debugging vector types a little cubersom as the debuggers will typically display three time the values for each compoenents due to the existence of the three sets.

To simplify vector types, GLM allows exposing only x, y, z and w components thanks to `GLM_FORCE_XYZW_ONLY` define.

### <a name="section2_16"></a> 2.16. GLM\_FORCE\_LEFT\_HANDED: Force left handed coordinate system

By default, OpenGL is using a right handed coordinate system. However, others APIs such as Direct3D have done different choice and relies on the left handed coordinate system.

GLM allows switching the coordinate system to left handed by defining `GLM_FORCE_LEFT_HANDED`.

### <a name="section2_17"></a> 2.17. GLM\_FORCE\_DEPTH\_ZERO\_TO\_ONE: Force the use of a clip space between 0 to 1

By default, OpenGL is using a -1 to 1 clip space in Z-axis. However, others APIs such as Direct3D relies on a clip space between 0 to 1 in Z-axis.

GLM allows switching the clip space in Z-axis to 0 to 1 by defining `GLM_FORCE_DEPTH_ZERO_TO_ONE`.

### <a name="section2_18"></a> 2.18. GLM\_FORCE\_SIZE\_T\_LENGTH: Vector and matrix static size

GLSL supports the member function .length() for all vector and matrix types.

```cpp
#include <glm/glm.hpp>

void foo(vec4 const& v)
{
    int Length = v.length();
    ...
}
```

This function returns an `int` however this function typically interacts with STL `size_t` based code. GLM provides `GLM_FORCE_SIZE_T_LENGTH` pre-processor configuration so that member functions `length()` return a `size_t`.

Additionally, GLM defines the type `glm::length_t` to identify `length()` returned type, independently from `GLM_FORCE_SIZE_T_LENGTH`.

```cpp
#define GLM_FORCE_SIZE_T_LENGTH
#include <glm/glm.hpp>

void foo(vec4 const& v)
{
    glm::length_t Length = v.length();
    ...
}
```

### <a name="section2_19"></a> 2.19. GLM\_FORCE\_UNRESTRICTED\_GENTYPE: Removing genType restriction

GLSL has restrictions on types supported by certain functions that may appear excessive.
By default, GLM follows the GLSL specification as accurately as possible however it's possible to relax these rules using `GLM_FORCE_UNRESTRICTED_GENTYPE` define.

```cpp
#include <glm/glm.hpp>

float average(float const A, float const B)
{
    return glm::mix(A, B, 0.5f); // By default glm::mix only supports floating-point types
}
```

By defining GLM\_FORCE\_UNRESTRICTED\_GENTYPE, we allow using integer types:

```cpp
#define GLM_FORCE_UNRESTRICTED_GENTYPE
#include <glm/glm.hpp>

int average(int const A, int const B)
{
    return glm::mix(A, B, 0.5f); // integers are ok thanks to GLM_FORCE_UNRESTRICTED_GENTYPE
}
```

### <a name="section2_20"></a> 2.20. GLM\_FORCE\_SILENT\_WARNINGS: Silent C++ warnings from language extensions

When using /W4 on Visual C++ or -Wpedantic on GCC, for example, the compilers will generate warnings for using C++ language extensions (/Za with Visual C++) such as anonymous struct.
GLM relies on anonymous structs for swizzle operators and aligned vector types. To silent those warnings define `GLM_FORCE_SILENT_WARNINGS` before including GLM headers.

### <a name="section2_21"></a> 2.21. GLM\_FORCE\_QUAT\_DATA\_WXYZ: Force GLM to store quat data as w,x,y,z instead of x,y,z,w

By default GLM store quaternion components with the x, y, z, w order. `GLM_FORCE_QUAT_DATA_WXYZ` allows switching the quaternion data storage to the w, x, y, z order.

---
<div style="page-break-after: always;"> </div>

## <a name="section3"></a> 3. Stable extensions

### <a name="section3_1"></a> 3.1. Scalar types

#### 3.1.1. GLM_EXT_scalar_int_sized

This extension exposes sized and signed integer types.

Include `<glm/ext/scalar_int_sized.hpp>` to use these features.

#### 3.1.2. GLM_EXT_scalar_uint_sized

This extension exposes sized and unsigned integer types.

```cpp
#include <glm/ext/scalar_common.hpp>

glm::uint64 pack(glm::uint32 A, glm::uint16 B, glm::uint8 C, glm::uint8 D)
{
	glm::uint64 ShiftA = 0;
	glm::uint64 ShiftB = sizeof(glm::uint32) * 8;
	glm::uint64 ShiftC = (sizeof(glm::uint32) + sizeof(glm::uint16)) * 8;
	glm::uint64 ShiftD = (sizeof(glm::uint32) + sizeof(glm::uint16) + sizeof(glm::uint8)) * 8;
	return (glm::uint64(A) << ShiftA) | (glm::uint64(B) << ShiftB) | (glm::uint64(C) << ShiftC) | (glm::uint64(D) << ShiftD);
}
```

Include `<glm/ext/scalar_uint_sized.hpp>` to use these features.

### <a name="section3_2"></a> 3.2. Scalar functions

#### 3.2.1. GLM_EXT_scalar_common

This extension exposes support for `min` and `max` functions taking more than two scalar arguments. Also, it adds `fmin` and `fmax` variants which prevents `NaN` propagation.

```cpp
#include <glm/ext/scalar_common.hpp>

float positiveMax(float const a, float const b)
{
    return glm::fmax(a, b, 0.0f);
}
```

Include `<glm/ext/scalar_common.hpp>` to use these features.

#### 3.2.2. GLM_EXT_scalar_relational

This extension exposes `equal` and `notEqual` scalar variants which takes an epsilon argument.

```cpp
#include <glm/ext/scalar_relational.hpp>

bool epsilonEqual(float const a, float const b)
{
    float const CustomEpsilon = 0.0001f;
    return glm::equal(a, b, CustomEpsilon);
}
```

Include `<glm/ext/scalar_relational.hpp>` to use these features.

#### 3.2.3. GLM_EXT_scalar_constants

This extension exposes useful constants such as `epsilon` and `pi`.

```cpp
#include <glm/ext/scalar_constants.hpp>

float circumference(float const Diameter)
{
    return glm::pi<float>() * Diameter;
}
```

```cpp
#include <glm/common.hpp> // abs
#include <glm/ext/scalar_constants.hpp> // epsilon

bool equalULP1(float const a, float const b)
{
    return glm::abs(a - b) <= glm::epsilon<float>();
}
```

Include `<glm/ext/scalar_constants.hpp>` to use these features.

#### 3.2.4. GLM_EXT_scalar_ulp

This extension exposes function that measure of accuracy in numeric calculations.

```cpp
#include <glm/ext/scalar_ulp.hpp>

bool test_ulp(float x)
{
    float const a = glm::next_float(x); // return a float a ULP away from the float argument.
    return float_distance(a, x) == 1; // check both float are a single ULP away.
}
```

Include `<glm/ext/scalar_ulp.hpp>` to use these features.

### <a name="section3_3"></a> 3.3. Vector types

#### 3.3.1. GLM_EXT_vector_float1

This extension exposes single-precision floating point vector with 1 component: `vec1`.

Include `<glm/ext/vector_float1.hpp>` to use these features.

#### 3.3.2. GLM_EXT_vector_float2

This extension exposes single-precision floating point vector with 2 components: `vec2`.

Include `<glm/ext/vector_float2.hpp>` to use these features.

#### 3.3.3. GLM_EXT_vector_float3

This extension exposes single-precision floating point vector with 3 components: `vec3`.

Include `<glm/ext/vector_float3.hpp>` to use these features.

#### 3.3.4. GLM_EXT_vector_float4

This extension exposes single-precision floating point vector with 4 components: `vec4`.

Include `<glm/ext/vector_float4.hpp>` to use these features.

#### 3.3.5. GLM_EXT_vector_double1

This extension exposes double-precision floating point vector with 1 component: `dvec1`.

Include `<glm/ext/vector_double1.hpp>` to use these features.

#### 3.3.6. GLM_EXT_vector_double2

This extension exposes double-precision floating point vector with 2 components: `dvec2`.

Include `<glm/ext/vector_double2.hpp>` to use these features.

#### 3.3.7. GLM_EXT_vector_double3

This extension exposes double-precision floating point vector with 3 components: `dvec3`.

Include `<glm/ext/vector_double3.hpp>` to use these features.

#### 3.3.8. GLM_EXT_vector_double4

This extension exposes double-precision floating point vector with 4 components: `dvec4`.

Include `<glm/ext/vector_double4.hpp>` to use these features.

#### 3.3.9. GLM_EXT_vector_int1

This extension exposes signed integer vector with 1 component: `ivec1`.

Include `<glm/ext/vector_int1.hpp>` to use these features.

#### 3.3.10. GLM_EXT_vector_int2

This extension exposes signed integer vector with 2 components: `ivec2`.

Include `<glm/ext/vector_int2.hpp>` to use these features.

#### 3.3.11. GLM_EXT_vector_int3

This extension exposes signed integer vector with 3 components: `ivec3`.

Include `<glm/ext/vector_int3.hpp>` to use these features.

#### 3.3.12. GLM_EXT_vector_int4

This extension exposes signed integer vector with 4 components: `ivec4`.

Include `<glm/ext/vector_int4.hpp>` to use these features.

#### 3.3.13. GLM_EXT_vector_int1

This extension exposes unsigned integer vector with 1 component: `uvec1`.

Include `<glm/ext/vector_uint1.hpp>` to use these features.

#### 3.3.14. GLM_EXT_vector_uint2

This extension exposes unsigned integer vector with 2 components: `uvec2`.

Include `<glm/ext/vector_uint2.hpp>` to use these features.

#### 3.3.15. GLM_EXT_vector_uint3

This extension exposes unsigned integer vector with 3 components: `uvec3`.

Include `<glm/ext/vector_uint3.hpp>` to use these features.

#### 3.3.16. GLM_EXT_vector_uint4

This extension exposes unsigned integer vector with 4 components: `uvec4`.

Include `<glm/ext/vector_uint4.hpp>` to use these features.

#### 3.3.17. GLM_EXT_vector_bool1

This extension exposes boolean vector with 1 component: `bvec1`.

Include `<glm/ext/vector_bool1.hpp>` to use these features.

#### 3.3.18. GLM_EXT_vector_bool2

This extension exposes boolean vector with 2 components: `bvec2`.

Include `<glm/ext/vector_bool2.hpp>` to use these features.

#### 3.3.19. GLM_EXT_vector_bool3

This extension exposes boolean vector with 3 components: `bvec3`.

Include `<glm/ext/vector_bool3.hpp>` to use these features.

#### 3.3.20. GLM_EXT_vector_bool4

This extension exposes boolean vector with 4 components: `bvec4`.

Include `<glm/ext/vector_bool4.hpp>` to use these features.

### <a name="section3_4"></a> 3.4. Vector types with precision qualifiers

#### 3.4.1. GLM_EXT_vector_float1_precision

This extension exposes single-precision floating point vector with 1 component using various precision in term of ULPs: `lowp_vec1`, `mediump_vec1` and `highp_vec1`.

Include `<glm/ext/vector_float1_precision.hpp>` to use these features.

#### 3.4.2. GLM_EXT_vector_float2_precision

This extension exposes single-precision floating point vector with 2 components using various precision in term of ULPs: `lowp_vec2`, `mediump_vec2` and `highp_vec2`.

Include `<glm/ext/vector_float2_precision.hpp>` to use these features.

#### 3.4.3. GLM_EXT_vector_float3_precision

This extension exposes single-precision floating point vector with 3 components using various precision in term of ULPs: `lowp_vec3`, `mediump_vec3` and `highp_vec3`.

Include `<glm/ext/vector_float3_precision.hpp>` to use these features.

#### 3.4.4. GLM_EXT_vector_float4_precision

This extension exposes single-precision floating point vector with 4 components using various precision in term of ULPs: `lowp_vec4`, `mediump_vec4` and `highp_vec4`.

Include `<glm/ext/vector_float4_precision.hpp>` to use these features.

#### 3.4.5. GLM_EXT_vector_double1_precision

This extension exposes double-precision floating point vector with 1 component using various precision in term of ULPs: `lowp_dvec1`, `mediump_dvec1` and `highp_dvec1`.

Include `<glm/ext/vector_double1_precision.hpp>` to use these features.

#### 3.4.6. GLM_EXT_vector_double2_precision

This extension exposes double-precision floating point vector with 2 components using various precision in term of ULPs: `lowp_dvec2`, `mediump_dvec2` and `highp_dvec2`.

Include `<glm/ext/vector_double2_precision.hpp>` to use these features.

#### 3.4.7. GLM_EXT_vector_double3_precision

This extension exposes double-precision floating point vector with 3 components using various precision in term of ULPs: `lowp_dvec3`, `mediump_dvec3` and `highp_dvec3`.

Include `<glm/ext/vector_double3_precision.hpp>` to use these features.

#### 3.4.8. GLM_EXT_vector_double4_precision

This extension exposes double-precision floating point vector with 4 components using various precision in term of ULPs: `lowp_dvec4`, `mediump_dvec4` and `highp_dvec4`.

Include `<glm/ext/vector_double4_precision.hpp>` to use these features.

### <a name="section3_5"></a> 3.5. Vector functions

#### 3.5.1. GLM_EXT_vector_common

This extension exposes support for `min` and `max` functions taking more than two vector arguments. Also, it adds `fmin` and `fmax` variants which prevents `NaN` propagation.

```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_common.hpp> // fmax

float positiveMax(float const a, float const b)
{
    return glm::fmax(a, b, 0.0f);
}
```

Include `<glm/ext/vector_common.hpp>` to use these features.

#### 3.5.2. GLM_EXT_vector_relational

This extension exposes `equal` and `notEqual` vector variants which takes an epsilon argument.

```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_relational.hpp> // equal, all

bool epsilonEqual(glm::vec2 const& A, glm::vec2 const& B)
{
    float const CustomEpsilon = 0.0001f;
    return glm::all(glm::equal(A, B, CustomEpsilon));
}
```

Include `<glm/ext/vector_relational.hpp>` to use these features.

#### 3.5.3. GLM_EXT_vector_ulp

This extension exposes function that measure of accuracy in numeric calculations.

```cpp
#include <glm/ext/vector_ulp.hpp>
#include <glm/ext/vector_float4.hpp>
#include <glm/ext/vector_int4.hpp>

bool test_ulp(glm::vec4 const& x)
{
    glm::vec4 const a = glm::next_float(x); // return a float a ULP away from the float argument.
    return glm::all(float_distance(a, x) == glm::ivec4(1)); // check both float are a single ULP away.
}
```

Include `<glm/ext/vector_ulp.hpp>` to use these features.

### <a name="section3_6"></a> 3.6. Matrix types

#### 3.6.1. GLM_EXT_matrix_float2x2

This extension exposes single-precision floating point vector with 2 columns by 2 rows: `mat2x2`.

Include `<glm/ext/matrix_float2x2.hpp>` to use these features.

#### 3.6.2. GLM_EXT_matrix_float2x3

This extension exposes single-precision floating point vector with 2 columns by 3 rows: `mat2x3`.

Include `<glm/ext/matrix_float2x3.hpp>` to use these features.

#### 3.6.3. GLM_EXT_matrix_float2x4

This extension exposes single-precision floating point vector with 2 columns by 4 rows: `mat2x4`.

Include `<glm/ext/matrix_float2x4.hpp>` to use these features.

#### 3.6.4. GLM_EXT_matrix_float3x2

This extension exposes single-precision floating point vector with 3 columns by 2 rows: `mat3x2`.

Include `<glm/ext/matrix_float3x2.hpp>` to use these features.

#### 3.6.5. GLM_EXT_matrix_float3x3

This extension exposes single-precision floating point vector with 3 columns by 3 rows: `mat3x3`.

Include `<glm/ext/matrix_float3x3.hpp>` to use these features.

#### 3.6.6. GLM_EXT_matrix_float3x4

This extension exposes single-precision floating point vector with 3 columns by 4 rows: `mat3x4`.

Include `<glm/ext/matrix_float3x4.hpp>` to use these features.

#### 3.6.7. GLM_EXT_matrix_float4x2

This extension exposes single-precision floating point vector with 4 columns by 2 rows: `mat4x2`.

Include `<glm/ext/matrix_float4x2.hpp>` to use these features.

#### 3.6.8. GLM_EXT_matrix_float4x3

This extension exposes single-precision floating point vector with 4 columns by 3 rows: `mat4x3`.

Include `<glm/ext/matrix_float4x3.hpp>` to use these features.

#### 3.6.9. GLM_EXT_matrix_float4x4

This extension exposes single-precision floating point vector with 4 columns by 4 rows: `mat4x4`.

Include `<glm/ext/matrix_float4x4.hpp>` to use these features.

#### 3.6.10. GLM_EXT_matrix_double2x2

This extension exposes double-precision floating point vector with 2 columns by 2 rows: `dmat2x2`.

Include `<glm/ext/matrix_double2x2.hpp>` to use these features.

#### 3.6.11. GLM_EXT_matrix_double2x3

This extension exposes double-precision floating point vector with 2 columns by 3 rows: `dmat2x3`.

Include `<glm/ext/matrix_double2x3.hpp>` to use these features.

#### 3.6.12. GLM_EXT_matrix_double2x4

This extension exposes double-precision floating point vector with 2 columns by 4 rows: `dmat2x4`.

Include `<glm/ext/matrix_double2x4.hpp>` to use these features.

#### 3.6.13. GLM_EXT_matrix_double3x2

This extension exposes double-precision floating point vector with 3 columns by 2 rows: `dmat3x2`.

Include `<glm/ext/matrix_double3x2.hpp>` to use these features.

#### 3.6.14. GLM_EXT_matrix_double3x3

This extension exposes double-precision floating point vector with 3 columns by 3 rows: `dmat3x3`.

Include `<glm/ext/matrix_double3x3.hpp>` to use these features.

#### 3.6.15. GLM_EXT_matrix_double3x4

This extension exposes double-precision floating point vector with 3 columns by 4 rows: `dmat3x4`.

Include `<glm/ext/matrix_double3x4.hpp>` to use these features.

#### 3.6.16. GLM_EXT_matrix_double4x2

This extension exposes double-precision floating point vector with 4 columns by 2 rows: `dmat4x2`.

Include `<glm/ext/matrix_double4x2.hpp>` to use these features.

#### 3.6.17. GLM_EXT_matrix_double4x3

This extension exposes double-precision floating point vector with 4 columns by 3 rows: `dmat4x3`.

Include `<glm/ext/matrix_double4x3.hpp>` to use these features.

#### 3.6.18. GLM_EXT_matrix_double4x4

This extension exposes double-precision floating point vector with 4 columns by 4 rows: `dmat4x4`.

Include `<glm/ext/matrix_double4x4.hpp>` to use these features.

### <a name="section3_7"></a> 3.7. Matrix types with precision qualifiers

#### 3.7.1. GLM_EXT_matrix_float2x2_precision

This extension exposes single-precision floating point vector with 2 columns by 2 rows using various precision in term of ULPs: `lowp_mat2x2`, `mediump_mat2x2` and `highp_mat2x2`.

Include `<glm/ext/matrix_float2x2_precision.hpp>` to use these features.

#### 3.7.2. GLM_EXT_matrix_float2x3_precision

This extension exposes single-precision floating point vector with 2 columns by 3 rows using various precision in term of ULPs: `lowp_mat2x3`, `mediump_mat2x3` and `highp_mat2x3`.

Include `<glm/ext/matrix_float2x3_precision.hpp>` to use these features.

#### 3.7.3. GLM_EXT_matrix_float2x4_precision

This extension exposes single-precision floating point vector with 2 columns by 4 rows using various precision in term of ULPs: `lowp_mat2x4`, `mediump_mat2x4` and `highp_mat2x4`.

Include `<glm/ext/matrix_float2x4_precision.hpp>` to use these features.

#### 3.7.4. GLM_EXT_matrix_float3x2_precision

This extension exposes single-precision floating point vector with 3 columns by 2 rows using various precision in term of ULPs: `lowp_mat3x2`, `mediump_mat3x2` and `highp_mat3x2`.

Include `<glm/ext/matrix_float3x2_precision.hpp>` to use these features.

#### 3.7.5. GLM_EXT_matrix_float3x3_precision

This extension exposes single-precision floating point vector with 3 columns by 3 rows using various precision in term of ULPs: `lowp_mat3x3`, `mediump_mat3x3` and `highp_mat3x3`.

Include `<glm/ext/matrix_float3x3_precision.hpp>` to use these features.

#### 3.7.6. GLM_EXT_matrix_float3x4_precision

This extension exposes single-precision floating point vector with 3 columns by 4 rows using various precision in term of ULPs: `lowp_mat3x4`, `mediump_mat3x4` and `highp_mat3x4`.

Include `<glm/ext/matrix_float3x4_precision.hpp>` to use these features.

#### 3.7.7. GLM_EXT_matrix_float4x2_precision

This extension exposes single-precision floating point vector with 4 columns by 2 rows using various precision in term of ULPs: `lowp_mat4x2`, `mediump_mat4x2` and `highp_mat4x2`.

Include `<glm/ext/matrix_float4x2_precision.hpp>` to use these features.

#### 3.7.8. GLM_EXT_matrix_float4x3_precision

This extension exposes single-precision floating point vector with 4 columns by 3 rows using various precision in term of ULPs: `lowp_mat4x3`, `mediump_mat4x3` and `highp_mat4x3`.

Include `<glm/ext/matrix_float4x3_precision.hpp>` to use these features.

#### 3.7.9. GLM_EXT_matrix_float4x4_precision

This extension exposes single-precision floating point vector with 4 columns by 4 rows using various precision in term of ULPs: `lowp_mat4x4`, `mediump_mat4x4` and `highp_mat4x4`.

Include `<glm/ext/matrix_float4x4_precision.hpp>` to use these features.

#### 3.7.10. GLM_EXT_matrix_double2x2_precision

This extension exposes double-precision floating point vector with 2 columns by 2 rows using various precision in term of ULPs: `lowp_dmat2x2`, `mediump_dmat2x2` and `highp_dmat2x2`.

Include `<glm/ext/matrix_double2x2_precision.hpp>` to use these features.

#### 3.7.11. GLM_EXT_matrix_double2x3_precision

This extension exposes double-precision floating point vector with 2 columns by 3 rows using various precision in term of ULPs: `lowp_dmat2x3`, `mediump_dmat2x3` and `highp_dmat2x3`.

Include `<glm/ext/matrix_double2x3_precision.hpp>` to use these features.

#### 3.7.12. GLM_EXT_matrix_double2x4_precision

This extension exposes double-precision floating point vector with 2 columns by 4 rows using various precision in term of ULPs: `lowp_dmat2x4`, `mediump_dmat2x4` and `highp_dmat2x4`.

Include `<glm/ext/matrix_double2x4_precision.hpp>` to use these features.

#### 3.7.13. GLM_EXT_matrix_double3x2_precision

This extension exposes double-precision floating point vector with 3 columns by 2 rows using various precision in term of ULPs: `lowp_dmat3x2`, `mediump_dmat3x2` and `highp_dmat3x2`.

Include `<glm/ext/matrix_double3x2_precision.hpp>` to use these features.

#### 3.7.14. GLM_EXT_matrix_double3x3_precision

This extension exposes double-precision floating point vector with 3 columns by 3 rows using various precision in term of ULPs: `lowp_dmat3x3`, `mediump_dmat3x3` and `highp_dmat3x3`.

Include `<glm/ext/matrix_double3x3_precision.hpp>` to use these features.

#### 3.7.15. GLM_EXT_matrix_double3x4_precision

This extension exposes double-precision floating point vector with 3 columns by 4 rows using various precision in term of ULPs: `lowp_dmat3x4`, `mediump_dmat3x4` and `highp_dmat3x4`.

Include `<glm/ext/matrix_double3x4_precision.hpp>` to use these features.

#### 3.7.16. GLM_EXT_matrix_double4x2_precision

This extension exposes double-precision floating point vector with 4 columns by 2 rows using various precision in term of ULPs: `lowp_dmat4x2`, `mediump_dmat4x2` and `highp_dmat4x2`.

Include `<glm/ext/matrix_double4x2_precision.hpp>` to use these features.

#### 3.7.17. GLM_EXT_matrix_double4x3_precision

This extension exposes double-precision floating point vector with 4 columns by 3 rows using various precision in term of ULPs: `lowp_dmat4x3`, `mediump_dmat4x3` and `highp_dmat4x3`.

Include `<glm/ext/matrix_double4x3_precision.hpp>` to use these features.

#### 3.7.18. GLM_EXT_matrix_double4x4_precision

This extension exposes double-precision floating point vector with 4 columns by 4 rows using various precision in term of ULPs: `lowp_dmat4x4`, `mediump_dmat4x4` and `highp_dmat4x4`.

Include `<glm/ext/matrix_double4x4_precision.hpp>` to use these features.

### <a name="section3_8"></a> 3.8. Matrix functions

#### 3.8.1. GLM_EXT_matrix_relational

This extension exposes `equal` and `notEqual` matrix variants which takes an optional epsilon argument.

```cpp
#include <glm/ext/vector_bool4.hpp> // bvec4
#include <glm/ext/matrix_float4x4.hpp> // mat4
#include <glm/ext/matrix_relational.hpp> // equal, all

bool epsilonEqual(glm::mat4 const& A, glm::mat4 const& B)
{
    float const CustomEpsilon = 0.0001f;
    glm::bvec4 const ColumnEqual = glm::equal(A, B, CustomEpsilon); // Evaluation per column
    return glm::all(ColumnEqual);
}
```

Include `<glm/ext/matrix_relational.hpp>` to use these features.

#### 3.8.2. GLM_EXT_matrix_transform

This extension exposes matrix transformation functions: `translate`, `rotate` and `scale`.

```cpp
#include <glm/ext/vector_float2.hpp> // vec2
#include <glm/ext/vector_float3.hpp> // vec3
#include <glm/ext/matrix_float4x4.hpp> // mat4x4
#include <glm/ext/matrix_transform.hpp> // translate, rotate, scale, identity

glm::mat4 computeModelViewMatrix(float Translate, glm::vec2 const & Rotate)
{
	glm::mat4 View = glm::translate(glm::identity(), glm::vec3(0.0f, 0.0f, -Translate));
	View = glm::rotate(View, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
	View = glm::rotate(View, Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
	glm::mat4 Model = glm::scale(glm::identity(), glm::vec3(0.5f));
	return View * Model;
}
```

Include `<glm/ext/matrix_transform.hpp>` to use these features.

#### 3.8.3. GLM_EXT_matrix_clip_space

This extension exposes functions to transform scenes into the clip space.

```cpp
#include <glm/ext/matrix_float4x4.hpp> // mat4x4
#include <glm/ext/matrix_clip_space.hpp> // perspective
#include <glm/trigonometric.hpp> // radians

glm::mat4 computeProjection(float Width, float Height)
{
	return glm::perspective(glm::radians(45.0f), Width / Height, 0.1f, 100.f);
}
```

Include `<glm/ext/matrix_clip_space.hpp>` to use these features.

#### 3.8.4. GLM_EXT_matrix_projection

This extension exposes functions to map object coordinates into window coordinates and reverse

Include `<glm/ext/matrix_projection.hpp>` to use these features.

### <a name="section3_9"></a> 3.9. Quaternion types

#### 3.9.1. GLM_EXT_quaternion_float

This extension exposes single-precision floating point quaternion: `quat`.

Include `<glm/ext/quaternion_float.hpp>` to use these features.

#### 3.9.2. GLM_EXT_quaternion_double

This extension exposes double-precision floating point quaternion: `dquat`.

Include `<glm/ext/quaternion_double.hpp>` to use these features.

### <a name="section3_10"></a> 3.10. Quaternion types with precision qualifiers

#### 3.10.1. GLM_EXT_quaternion_float_precision

This extension exposes single-precision floating point quaternion using various precision in term of ULPs: `lowp_quat`, `mediump_quat` and `highp_quat`.

Include `<glm/ext/quaternion_float_precision.hpp>` to use these features.

#### 3.10.2. GLM_EXT_quaternion_double_precision

This extension exposes double-precision floating point quaternion using various precision in term of ULPs: `lowp_dquat`, `mediump_dquat` and `highp_dquat`.

Include `<glm/ext/quaternion_double_precision.hpp>` to use these features.

### <a name="section3_11"></a> 3.11. Quaternion functions

#### 3.11.1. GLM_EXT_quaternion_common

This extension exposes common quaternion functions such as `slerp`, `conjugate` and `inverse`.

Include `<glm/ext/quaternion_common.hpp>` to use these features.

#### 3.11.2. GLM_EXT_quaternion_geometric

This extension exposes geometric quaternion functions such as `length`, `normalize`, `dot` and `cross`.

Include `<glm/ext/quaternion_geometric.hpp>` to use these features.

#### 3.11.3. GLM_EXT_quaternion_trigonometric

This extension exposes trigonometric quaternion functions such as `angle` and `axis`.

Include `<glm/ext/quaternion_trigonometric.hpp>` to use these features.

#### 3.11.4. GLM_EXT_quaternion_exponential

This extensions expose exponential functions for quaternions such as `exp`, `log`, `pow` and `sqrt`.

Include `<glm/ext/quaternion_exponential.hpp>` to use these features.

#### 3.11.5. GLM_EXT_quaternion_relational

This extension exposes relational functions to compare quaternions.

Include `<glm/ext/quaternion_relational.hpp>` to use these features.

#### 3.11.6. GLM_EXT_quaternion_transform

This extension exposes functions to transform objects.

Include `<glm/ext/quaternion_transform.hpp>` to use these features.

---
<div style="page-break-after: always;"> </div>

## <a name="section4"></a> 4. Recommended extensions

GLM extends the core GLSL feature set with extensions. These extensions include: quaternion, transformation, spline, matrix inverse, color spaces, etc.

To include an extension, we only need to include the dedicated header file. Once included, the features are added to the GLM namespace.

```cpp
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

int foo()
{
    glm::vec4 Position = glm::vec4(glm:: vec3(0.0f), 1.0f);
    glm::mat4 Model = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));

    glm::vec4 Transformed = Model * Position;
    ...

    return 0;
}
```

When an extension is included, all the dependent core functionalities and extensions will be included as well.

### <a name="section4_1"></a> 4.1. GLM_GTC_bitfield

Fast bitfield operations on scalar and vector variables.

`<glm/gtc/bitfield.hpp>` need to be included to use these features.

### <a name="section4_2"></a> 4.2. GLM_GTC_color_space

Conversion between linear RGB and sRGB color spaces.

`<glm/gtc/color_space.hpp>` need to be included to use these features.

### <a name="section4_3"></a> 4.3. GLM_GTC_constants

Provide a list of built-in constants.

`<glm/gtc/constants.hpp>` need to be included to use these features.

### <a name="section4_4"></a> 4.4. GLM\_GTC\_epsilon

Approximate equality comparisons for floating-point numbers, possibly with a user-defined epsilon.

`<glm/gtc/epsilon.hpp>` need to be included to use these features.

### <a name="section4_5"></a> 4.5. GLM\_GTC\_integer

Integer variants of core GLM functions.

`<glm/gtc/integer.hpp>` need to be included to use these features.

### <a name="section4_6"></a> 4.6. GLM\_GTC\_matrix\_access

Functions to conveniently access the individual rows or columns of a matrix.

`<glm/gtc/matrix_access.hpp>` need to be included to use these features.

### <a name="section4_7"></a> 4.7. GLM\_GTC\_matrix\_integer

Integer matrix types similar to the core floating-point matrices.  Some operations (such as inverse and determinant) are not supported.

`<glm/gtc/matrix_integer.hpp>` need to be included to use these features.

### <a name="section4_8"></a> 4.8. GLM\_GTC\_matrix\_inverse

Additional matrix inverse functions.

`<glm/gtc/matrix_inverse.hpp>` need to be included to use these features.

### <a name="section4_9"></a> 4.9. GLM\_GTC\_matrix\_transform

Matrix transformation functions that follow the OpenGL fixed-function conventions.

For example, the `lookAt` function generates a transformation matrix that projects world coordinates into eye coordinates suitable for projection matrices (e.g. `perspective`, `ortho`). See the OpenGL compatibility specifications for more information about the layout of these generated matrices.

The matrices generated by this extension use standard OpenGL fixed-function conventions. For example, the `lookAt` function generates a transform from world space into the specific eye space that the
projective matrix functions (`perspective`, `ortho`, etc) are designed to expect. The OpenGL compatibility specifications define the particular layout of this eye space.

`<glm/gtc/matrix_transform.hpp>` need to be included to use these features.

### <a name="section4_10"></a> 4.10. GLM\_GTC\_noise

Define 2D, 3D and 4D procedural noise functions.

`<glm/gtc/noise.hpp>` need to be included to use these features.

![](./doc/manual/noise-simplex1.jpg)

Figure 4.10.1: glm::simplex(glm::vec2(x / 16.f, y / 16.f));

![](./doc/manual/noise-simplex2.jpg)

Figure 4.10.2: glm::simplex(glm::vec3(x / 16.f, y / 16.f, 0.5f));

![](./doc/manual/noise-simplex3.jpg)

Figure 4.10.3: glm::simplex(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f));

![](./doc/manual/noise-perlin1.jpg)

Figure 4.10.4: glm::perlin(glm::vec2(x / 16.f, y / 16.f));

![](./doc/manual/noise-perlin2.jpg)

Figure 4.10.5: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f));

![](./doc/manual/noise-perlin3.jpg)

Figure 4.10.6: glm::perlin(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f)));

![](./doc/manual/noise-perlin4.png)

Figure 4.10.7: glm::perlin(glm::vec2(x / 16.f, y / 16.f), glm::vec2(2.0f));

![](./doc/manual/noise-perlin5.png)

Figure 4.10.8: glm::perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f), glm::vec3(2.0f));

![](./doc/manual/noise-perlin6.png)

Figure 4.10.9: glm::perlin(glm::vec4(x / 16.f, y / 16.f, glm::vec2(0.5f)), glm::vec4(2.0f));

### <a name="section4_11"></a> 4.11. GLM\_GTC\_packing

Convert scalar and vector types to and from packed formats, saving space at the cost of precision. However, packing a value into a format that it was previously unpacked from is guaranteed to be lossless.

`<glm/gtc/packing.hpp>` need to be included to use these features.

### <a name="section4_12"></a> 4.12. GLM\_GTC\_quaternion

Quaternions and operations upon thereof.

`<glm/gtc/quaternion.hpp>` need to be included to use these features.

### <a name="section4_13"></a> 4.13. GLM\_GTC\_random

Probability distributions in up to four dimensions.

`<glm/gtc/random.hpp>` need to be included to use these features.

![](./doc/manual/random-linearrand.png)

Figure 4.13.1: glm::vec4(glm::linearRand(glm::vec2(-1), glm::vec2(1)), 0, 1);

![](./doc/manual/random-circularrand.png)

Figure 4.13.2: glm::vec4(glm::circularRand(1.0f), 0, 1);

![](./doc/manual/random-sphericalrand.png)

Figure 4.13.3: glm::vec4(glm::sphericalRand(1.0f), 1);

![](./doc/manual/random-diskrand.png)

Figure 4.13.4: glm::vec4(glm::diskRand(1.0f), 0, 1);

![](./doc/manual/random-ballrand.png)

Figure 4.13.5: glm::vec4(glm::ballRand(1.0f), 1);

![](./doc/manual/random-gaussrand.png)

Figure 4.13.6: glm::vec4(glm::gaussRand(glm::vec3(0), glm::vec3(1)), 1);

### <a name="section4_14"></a> 4.14. GLM\_GTC\_reciprocal

Reciprocal trigonometric functions (e.g. secant, cosecant, tangent).

`<glm/gtc/reciprocal.hpp>` need to be included to use the features of this extension.

### <a name="section4_15"></a> 4.15. GLM\_GTC\_round

Various rounding operations and common special cases thereof.

`<glm/gtc/round.hpp>` need to be included to use the features of this extension.

### <a name="section4_16"></a> 4.16. GLM\_GTC\_type\_aligned

Aligned vector types.

`<glm/gtc/type_aligned.hpp>` need to be included to use the features of this extension.

### <a name="section4_17"></a> 4.17. GLM\_GTC\_type\_precision

Vector and matrix types with defined precisions, e.g. `i8vec4`, which is a 4D vector of signed 8-bit integers.

`<glm/gtc/type\_precision.hpp>` need to be included to use the features of this extension.

### <a name="section4_18"></a> 4.18. GLM\_GTC\_type\_ptr

Facilitate interactions between pointers to basic types (e.g. `float*`) and GLM types (e.g. `mat4`).

This extension defines an overloaded function, `glm::value_ptr`, which returns a pointer to the memory layout of any GLM vector or matrix (`vec3`, `mat4`, etc.). Matrix types store their values in column-major order. This is useful for uploading data to matrices or for copying data to buffer objects.

```cpp
// GLM_GTC_type_ptr provides a safe solution:
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>

void foo()
{
    glm::vec4 v(0.0f);
    glm::mat4 m(1.0f);
    ...
    glVertex3fv(glm::value_ptr(v))
    glLoadMatrixfv(glm::value_ptr(m));
}

// Another solution, this one inspired by the STL:
#include <glm/glm.hpp>

void foo()
{
    glm::vec4 v(0.0f);
    glm::mat4 m(1.0f);
    ...
    glVertex3fv(&v[0]);
    glLoadMatrixfv(&m[0][0]);
}
```

*Note: It would be possible to implement [`glVertex3fv`](http://www.opengl.org/sdk/docs/man2/xhtml/glVertex.xml)(glm::vec3(0)) in C++ with the appropriate cast operator that would result as an
implicit cast in this example. However cast operators may produce programs running with unexpected behaviours without build error or any form of notification.*

`<glm/gtc/type_ptr.hpp>` need to be included to use these features.

### <a name="section4_19"></a> 4.19. GLM\_GTC\_ulp

Measure a function's accuracy given a reference implementation of it. This extension works on floating-point data and provides results in [ULP](http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf).

`<glm/gtc/ulp.hpp>` need to be included to use these features.

### <a name="section4_20"></a> 4.20. GLM\_GTC\_vec1

Add \*vec1 types.

`<glm/gtc/vec1.hpp>` need to be included to use these features.

---
<div style="page-break-after: always;"> </div>

## <a name="section5"></a> 5. OpenGL interoperability

### <a name="section5_1"></a> 5.1. GLM replacements for deprecated OpenGL functions

OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core profile specification. GLM provides some replacement functions.

[***glRotate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml)

```cpp
glm::mat4 glm::rotate(glm::mat4 const& m, float angle, glm::vec3 const& axis);
glm::dmat4 glm::rotate(glm::dmat4 const& m, double angle, glm::dvec3 const& axis);
```

From `GLM_GTC_matrix_transform` extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glScale{f, d}:***](http://www.opengl.org/sdk/docs/man2/xhtml/glScale.xml)

```cpp
glm::mat4 glm::scale(glm::mat4 const& m, glm::vec3 const& factors);
glm::dmat4 glm::scale(glm::dmat4 const& m, glm::dvec3 const& factors);
```

From `GLM_GTC_matrix_transform` extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glTranslate{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glTranslate.xml)

```cpp
glm::mat4 glm::translate(glm::mat4 const& m, glm::vec3 const& translation);
glm::dmat4 glm::translate(glm::dmat4 const& m, glm::dvec3 const& translation);
```

From `GLM_GTC_matrix_transform` extension: &lt;glm/gtc/matrix\_transform.hpp&gt;

[***glLoadIdentity:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadIdentity.xml)

```cpp
glm::mat4(1.0) or glm::mat4();
glm::dmat4(1.0) or glm::dmat4();
```

From GLM core library: `<glm/glm.hpp>`

[***glMultMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultMatrix.xml)

```cpp
glm::mat4() * glm::mat4();
glm::dmat4() * glm::dmat4();
```

From GLM core library: `<glm/glm.hpp>`

[***glLoadTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glLoadTransposeMatrix.xml)

```cpp
glm::transpose(glm::mat4());
glm::transpose(glm::dmat4());
```

From GLM core library: `<glm/glm.hpp>`

[***glMultTransposeMatrix{f, d}:***](https://www.opengl.org/sdk/docs/man2/xhtml/glMultTransposeMatrix.xml)

```cpp
glm::mat4() * glm::transpose(glm::mat4());
glm::dmat4() * glm::transpose(glm::dmat4());
```

From GLM core library: `<glm/glm.hpp>`

[***glFrustum:***](http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml)

```cpp
glm::mat4 glm::frustum(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::frustum(double left, double right, double bottom, double top, double zNear, double zFar);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***glOrtho:***](https://www.opengl.org/sdk/docs/man2/xhtml/glOrtho.xml)

```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top, float zNear, float zFar);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top, double zNear, double zFar);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

### <a name="section5_2"></a> 5.2. GLM replacements for GLU functions

[***gluLookAt:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml)

```cpp
glm::mat4 glm::lookAt(glm::vec3 const& eye, glm::vec3 const& center, glm::vec3 const& up);
glm::dmat4 glm::lookAt(glm::dvec3 const& eye, glm::dvec3 const& center, glm::dvec3 const& up);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***gluOrtho2D:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluOrtho2D.xml)

```cpp
glm::mat4 glm::ortho(float left, float right, float bottom, float top);
glm::dmat4 glm::ortho(double left, double right, double bottom, double top);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***gluPerspective:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml)

```cpp
glm::mat4 perspective(float fovy, float aspect, float zNear, float zFar);
glm::dmat4 perspective(double fovy, double aspect, double zNear, double zFar);
```

Note that in GLM, fovy is expressed in radians, not degrees.

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***gluPickMatrix:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluPickMatrix.xml)

```cpp
glm::mat4 pickMatrix(glm::vec2 const& center, glm::vec2 const& delta, glm::ivec4 const& viewport);
glm::dmat4 pickMatrix(glm::dvec2 const& center, glm::dvec2 const& delta, glm::ivec4 const& viewport);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***gluProject:***](http://www.opengl.org/sdk/docs/man2/xhtml/gluProject.xml)

```cpp
glm::vec3 project(glm::vec3 const& obj, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 project(glm::dvec3 const& obj, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

[***gluUnProject:***](https://www.opengl.org/sdk/docs/man2/xhtml/gluUnProject.xml)

```cpp
glm::vec3 unProject(glm::vec3 const& win, glm::mat4 const& model, glm::mat4 const& proj, glm::ivec4 const& viewport);
glm::dvec3 unProject(glm::dvec3 const& win, glm::dmat4 const& model, glm::dmat4 const& proj, glm::ivec4 const& viewport);
```

From `GLM_GTC_matrix_transform` extension: `<glm/gtc/matrix_transform.hpp>`

---
<div style="page-break-after: always;"> </div>

## <a name="section6"></a> 6. Known issues

This section reports GLSL features that GLM can't accurately emulate due to language restrictions.

### <a name="section6_1"></a> 6.1. not function

The GLSL function 'not' is a keyword in C++. To prevent name collisions and ensure a consistent API, the name `not\_` (note the underscore) is used instead.

### <a name="section6_2"></a> 6.2. Precision qualifiers support

GLM supports GLSL precision qualifiers through prefixes instead of qualifiers. For example, GLM exposes \verb|lowp_vec4|, \verb|mediump_vec4| and \verb|highp_vec4| as variations of \verb|vec4|.

Similarly to GLSL, GLM precision qualifiers are used to trade precision of operations in term of [ULPs](http://en.wikipedia.org/wiki/Unit_in_the_last_place) for better performance. By default, all the types use high precision.

```cpp
// Using precision qualifier in GLSL:

ivec3 foo(in vec4 v)
{
    highp vec4 a = v;
    mediump vec4 b = a;
    lowp ivec3 c = ivec3(b);
    return c;
}

// Using precision qualifier in GLM:

#include <glm/glm.hpp>

ivec3 foo(const vec4 & v)
{
    highp_vec4 a = v;
    medium_vec4 b = a;
    lowp_ivec3 c = glm::ivec3(b);
    return c;
}
```

---
<div style="page-break-after: always;"> </div>

## <a name="section7"></a> 7. FAQ

### <a name="section7_1"></a> 7.1 Why GLM follows GLSL specification and conventions?

Following GLSL conventions is a really strict policy of GLM. It has been designed following the idea that everyone does its own math library with his own conventions. The idea is that brilliant developers (the OpenGL ARB) worked together and agreed to make GLSL. Following GLSL conventions
is a way to find consensus. Moreover, basically when a developer knows GLSL, he knows GLM.

### <a name="section7_2"></a> 7.2. Does GLM run GLSL program?

No, GLM is a C++ implementation of a subset of GLSL.

### <a name="section7_3"></a> 7.3. Does a GLSL compiler build GLM codes?

No, this is not what GLM attends to do.

### <a name="section7_4"></a> 7.4. Should I use ‘GTX’ extensions?

GTX extensions are qualified to be experimental extensions. In GLM this means that these extensions might change from version to version without any restriction. In practice, it doesn’t really change except time to
time. GTC extensions are stabled, tested and perfectly reliable in time. Many GTX extensions extend GTC extensions and provide a way to explore features and implementations and APIs and then are promoted to GTC
extensions. This is fairly the way OpenGL features are developed; through extensions.

Stating with GLM 0.9.9, to use experimental extensions, an application must define GLM_ENABLE_EXPERIMENTAL.

### <a name="section7_5"></a> 7.5. Where can I ask my questions?

A good place is [stackoverflow](http://stackoverflow.com/search?q=GLM) using the GLM tag.

### <a name="section7_6"></a> 7.6. Where can I find the documentation of extensions?

The Doxygen generated documentation includes a complete list of all extensions available. Explore this [*API documentation*](http://glm.g-truc.net/html/index.html) to get a complete
view of all GLM capabilities!

### <a name="section7_7"></a> 7.7. Should I use ‘using namespace glm;’?

NO! Chances are that if using namespace glm; is called, especially in a header file, name collisions will happen as GLM is based on GLSL which uses common tokens for types and functions. Avoiding using namespace
glm; will a higher compatibility with third party library and SDKs.

### <a name="section7_8"></a> 7.8. Is GLM fast?

GLM is mainly designed to be convenient and that's why it is written against the GLSL specification.

Following the Pareto principle where 20% of the code consumes 80% of the execution time, GLM operates perfectly on the 80% of the code that consumes 20% of the performances. Furthermore, thanks to the lowp,
mediump and highp qualifiers, GLM provides approximations which trade precision for performance. Finally, GLM can automatically produce SIMD optimized code for functions of its implementation.

However, on performance critical code paths, we should expect that dedicated algorithms should be written to reach peak performance.

### <a name="section7_9"></a> 7.9. When I build with Visual C++ with /W4 warning level, I have warnings...

You should not have any warnings even in `/W4` mode. However, if you expect such level for your code, then you should ask for the same level to the compiler by at least disabling the Visual C++ language extensions
(`/Za`) which generates warnings when used. If these extensions are enabled, then GLM will take advantage of them and the compiler will generate warnings.

### <a name="section7_10"></a> 7.10. Why some GLM functions can crash because of division by zero?

GLM functions crashing is the result of a domain error. Such behavior follows the precedent set by C and C++'s standard library. For example, it’s a domain error to pass a null vector (all zeroes) to glm::normalize function, or to pass a negative number into std::sqrt.

### <a name="section7_11"></a> 7.11. What unit for angles is used in GLM?

GLSL is using radians but GLU is using degrees to express angles. This has caused GLM to use inconsistent units for angles. Starting with GLM 0.9.6, all GLM functions are using radians. For more information, follow
the [link](http://www.g-truc.net/post-0693.html#menu).

### <a name="section7_12"></a> 7.12. Windows headers cause build errors...

Some Windows headers define min and max as macros which may cause compatibility with third party libraries such as GLM.
It is highly recommended to [`define NOMINMAX`](http://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c) before including Windows headers to workaround this issue.
To workaround the incompatibility with these macros, GLM will systematically undef these macros if they are defined.

### <a name="section7_13"></a> 7.13. Constant expressions support

GLM has some C++ [constant expressions](http://en.cppreference.com/w/cpp/language/constexpr) support. However, GLM automatically detects the use of SIMD instruction sets through compiler arguments to populate its implementation with SIMD intrinsics.
Unfortunately, GCC and Clang doesn't support SIMD instrinsics as constant expressions. To allow constant expressions on all vectors and matrices types, define `GLM_FORCE_PURE` before including GLM headers.

---
<div style="page-break-after: always;"> </div>

## <a name="section8"></a> 8. Code samples

This series of samples only shows various GLM features without consideration of any sort.

### <a name="section8_1"></a> 8.1. Compute a triangle normal

```cpp
#include <glm/glm.hpp> // vec3 normalize cross

glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
    return glm::normalize(glm::cross(c - a, b - a));
}

// A much faster but less accurate alternative:
#include <glm/glm.hpp> // vec3 cross
#include <glm/gtx/fast_square_root.hpp> // fastNormalize

glm::vec3 computeNormal(glm::vec3 const& a, glm::vec3 const& b, glm::vec3 const& c)
{
    return glm::fastNormalize(glm::cross(c - a, b - a));
}
```

### <a name="section8_2"></a> 8.2. Matrix transform

```cpp
#include <glm/glm.hpp> // vec3, vec4, ivec4, mat4
#include <glm/gtc/matrix_transform.hpp> // translate, rotate, scale, perspective
#include <glm/gtc/type_ptr.hpp> // value_ptr

void setUniformMVP(GLuint Location, glm::vec3 const& Translate, glm::vec3 const& Rotate)
{
    glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.f);
    glm::mat4 ViewTranslate = glm::translate(
        glm::mat4(1.0f), Translate);
    glm::mat4 ViewRotateX = glm::rotate(
        ViewTranslate, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
    glm::mat4 View = glm::rotate(ViewRotateX,
        Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
    glm::mat4 Model = glm::scale(
        glm::mat4(1.0f), glm::vec3(0.5f));
    glm::mat4 MVP = Projection * View * Model;
    glUniformMatrix4fv(Location, 1, GL_FALSE, glm::value_ptr(MVP));
}
```

### <a name="section8_3"></a> 8.3. Vector types

```cpp
#include <glm/glm.hpp> // vec2
#include <glm/gtc/type_precision.hpp> // hvec2, i8vec2, i32vec2

std::size_t const VertexCount = 4;

// Float quad geometry
std::size_t const PositionSizeF32 = VertexCount * sizeof(glm::vec2);
glm::vec2 const PositionDataF32[VertexCount] =
{
    glm::vec2(-1.0f,-1.0f),
    glm::vec2( 1.0f,-1.0f),
    glm::vec2( 1.0f, 1.0f),
    glm::vec2(-1.0f, 1.0f)
};

// Half-float quad geometry
std::size_t const PositionSizeF16 = VertexCount * sizeof(glm::hvec2);
glm::hvec2 const PositionDataF16[VertexCount] =
{
    glm::hvec2(-1.0f, -1.0f),
    glm::hvec2( 1.0f, -1.0f),
    glm::hvec2( 1.0f, 1.0f),
    glm::hvec2(-1.0f, 1.0f)
};

// 8 bits signed integer quad geometry
std::size_t const PositionSizeI8 = VertexCount * sizeof(glm::i8vec2);
glm::i8vec2 const PositionDataI8[VertexCount] =
{
    glm::i8vec2(-1,-1),
    glm::i8vec2( 1,-1),
    glm::i8vec2( 1, 1),
    glm::i8vec2(-1, 1)
};

// 32 bits signed integer quad geometry
std::size_t const PositionSizeI32 = VertexCount * sizeof(glm::i32vec2);
glm::i32vec2 const PositionDataI32[VertexCount] =
{
    glm::i32vec2(-1,-1),
    glm::i32vec2( 1,-1),
    glm::i32vec2( 1, 1),
    glm::i32vec2(-1, 1)
};
```

### <a name="section8_4"></a> 8.4. Lighting

```cpp
#include <glm/glm.hpp> // vec3 normalize reflect dot pow
#include <glm/gtc/random.hpp> // ballRand

// vecRand3, generate a random and equiprobable normalized vec3
glm::vec3 lighting(intersection const& Intersection, material const& Material, light const& Light, glm::vec3 const& View)
{
    glm::vec3 Color = glm::vec3(0.0f);
    glm::vec3 LightVertor = glm::normalize(
        Light.position() - Intersection.globalPosition() +
        glm::ballRand(0.0f, Light.inaccuracy());

    if(!shadow(Intersection.globalPosition(), Light.position(), LightVertor))
    {
        float Diffuse = glm::dot(Intersection.normal(), LightVector);
        if(Diffuse &lt;= 0.0f)
            return Color;

        if(Material.isDiffuse())
            Color += Light.color() * Material.diffuse() * Diffuse;

        if(Material.isSpecular())
        {
            glm::vec3 Reflect = glm::reflect(-LightVector, Intersection.normal());
            float Dot = glm::dot(Reflect, View);
            float Base = Dot &gt; 0.0f ? Dot : 0.0f;
            float Specular = glm::pow(Base, Material.exponent());
            Color += Material.specular() \* Specular;
        }
    }

    return Color;
}
```

---
<div style="page-break-after: always;"> </div>

## <a name="section9"></a> 9. Contributing to GLM

### <a name="section9_1"></a> 9.1. Submitting bug reports

Bug should be reported on Github using the [issue page](https://github.com/g-truc/glm/issues).

A minimal code to reproduce the issue will help.

Additional, bugs can be configuration specific. We can report the configuration by defining `GLM_FORCE_MESSAGES` before including GLM headers then build and copy paste the build messages GLM will output.

```cpp
#define GLM_FORCE_MESSAGES
#include <glm/glm.hpp>
```

An example of build messages generated by GLM:

```plaintext
GLM: 0.9.9.1
GLM: C++ 17 with extensions
GLM: GCC compiler detected"
GLM: x86 64 bits with AVX instruction set build target
GLM: Linux platform detected
GLM: GLM_FORCE_SWIZZLE is undefined. swizzling functions or operators are disabled.
GLM: GLM_FORCE_SIZE_T_LENGTH is undefined. .length() returns a glm::length_t, a typedef of int following GLSL.
GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is undefined. Follows strictly GLSL on valid function genTypes.
GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is undefined. Using negative one to one depth clip space.
GLM: GLM_FORCE_LEFT_HANDED is undefined. Using right handed coordinate system.
```

### <a name="section9_2"></a> 9.2. Contributing to GLM with pull request

This tutorial will show us how to successfully contribute a bug-fix to GLM using GitHub's Pull Request workflow.

We will be typing git commands in the Terminal. Mac and Linux users may have git pre-installed. You can download git from [here](http://git-scm.com/downloads).

The tutorial assumes you have some basic understanding of git concepts - repositories, branches, commits, etc. Explaining it all from scratch is beyond the scope of this tutorial. Some good links to learn git basics are: [Link 1](http://git-scm.com/book/en/Getting-Started-Git-Basics), [Link 2](https://www.atlassian.com/git/tutorial/git-basics)

#### Step 1: Setup our GLM Fork

We will make our changes in our own copy of the GLM sitory. On the GLM GitHub repo and we press the Fork button.
We need to download a copy of our fork to our local machine. In the terminal, type:

```plaintext
>>> git clone <our-repository-fork-git-url>
```

This will clone our fork repository into the current folder.

We can find our repository git url on the Github reposotory page. The url looks like this: `https://github.com/<our-username>/<repository-name>.git`

#### Step 2: Synchronizing our fork

We can use the following command to add `upstream` (original project repository) as a remote repository so that we can fetch the latest GLM commits into our branch and keep our forked copy is synchronized.

```plaintext
>>> git remote add upstream https://github.com/processing/processing.git
```

To synchronize our fork to the latest commit in the GLM repository, we can use the following command:

```plaintext
>>> git fetch upstream
```

Then, we can merge the remote master branch to our current branch:

```plaintext
>>> git merge upstream/master
```

Now our local copy of our fork has been synchronized. However, the fork's copy is not updated on GitHub's servers yet. To do that, use:

```plaintext
>>> git push origin master
```

#### Step 3: Modifying our GLM Fork

Our fork is now setup and we are ready to modify GLM to fix a bug.

It's a good practice to make changes in our fork in a separate branch than the master branch because we can submit only one pull request per branch.

Before creating a new branch, it's best to synchronize our fork and then create a new branch from the latest master branch.

If we are not on the master branch, we should switch to it using:

```plaintext
>>> git checkout master
```

To create a new branch called `bugifx`, we use:

```plaintext
git branch bugfix
```

Once the code changes for the fix is done, we need to commit the changes:

```plaintext
>>> git commit -m "Resolve the issue that caused problem with a specific fix #432"
```

The commit message should be as specific as possible and finished by the bug number in the [GLM GitHub issue page](https://github.com/g-truc/glm/issues)

Finally, we need to push our changes in our branch to our GitHub fork using:

```plaintext
>>> git push origin bugfix
```

Some things to keep in mind for a pull request:

* Keep it minimal: Try to make the minimum required changes to fix the issue. If we have added any debugging code, we should remove it.
* A fix at a time: The pull request should deal with one issue at a time only, unless two issue are so interlinked they must be fixed together.
* Write a test: GLM is largely unit tests. Unit tests are in `glm/test` directory. We should also add tests for the fixes we provide to ensure future regression doesn't happen.
* No whitespace changes: Avoid unnecessary formatting or whitespace changes in other parts of the code. Be careful with auto-format options in the code editor which can cause wide scale formatting changes.
* Follow [GLM Code Style](#section9_3) for consistency.
* Tests passes: Make sure GLM build and tests don't fail because of the changes.

#### Step 4: Submitting a Pull Request

We need to submit a pull request from the `bugfix` branch to GLM's master branch.

On the fork github page, we can click on the *Pull Request* button. Then we can describe our pull request. Finally we press *Send Pull Request*.

Please be patient and give them some time to go through it.

The pull request review may suggest additional changes. So we can make those changes in our branch, and push those changes to our fork repository. Our pull request will always include the latest changes in our branch on GitHub, so we don't need to resubmit the pull request.

Once your changes have been accepted, a project maintainer will merge our pull request.

We are grateful to the users for their time and effort in contributing fixes.

### <a name="section9_3"></a> 9.3. Coding style

#### Indentation

Always tabs. Never spaces.

#### Spacing

No space after if. Use if(blah) not if (blah). Example if/else block:

```cpp
if(blah)
{
    // yes like this
}
else
{
    // something besides
}
```

Single line if blocks:

```cpp
if(blah)
    // yes like this
else
    // something besides
```

No spaces inside parens:

```cpp
if (blah)    // No
if( blah )   // No
if ( blah )  // No
if(blah)     // Yes
```

Use spaces before/after commas:

```cpp
someFunction(apple,bear,cat);     // No
someFunction(apple, bear, cat);   // Yes
```

Use spaces before/after use of `+, -, *, /, %, >>, <<, |, &, ^, ||, &&` operators:

```cpp
vec4 v = a + b;
```

#### Blank lines

One blank line after the function blocks.

#### Comments

Always one space after the // in single line comments

One space before // at the end of a line (that has code as well)

Try to use // comments inside functions, to make it easier to remove a whole block via /\* \*/

#### Cases

```cpp
#define GLM_MY_DEFINE 76

class myClass
{};

myClass const MyClass;

namespace glm{ // glm namespace is for public code
namespace detail // glm::detail namespace is for implementation detail
{
    float myFunction(vec2 const& V)
    {
        return V.x + V.y;
    }

    float myFunction(vec2 const* const V)
    {
        return V->x + V->y;
    }
}//namespace detail
}//namespace glm
```

---
<div style="page-break-after: always;"> </div>

## <a name="section10"></a> 10. References

### <a name="section10_1"></a> 10.1. OpenGL specifications

* OpenGL 4.3 core specification
* [GLSL 4.30 specification](http://www.opengl.org/registry/doc/GLSLangSpec.4.30.7.diff.pdf)
![](media/image21.png){width="2.859722222222222in" height="1.6083333333333334in"}- [*GLU 1.3 specification*](http://www.opengl.org/documentation/specs/glu/glu1_3.pdf)

### <a name="section10_2"></a> 10.2. External links

* [GLM on stackoverflow](http://stackoverflow.com/search?q=GLM)

### <a name="section10_3"></a> 10.3. Projects using GLM

***[Leo’s Fortune](http://www.leosfortune.com/)***

Leo’s Fortune is a platform adventure game where you hunt down the cunning and mysterious thief that stole your gold. Available on PS4, Xbox One, PC, Mac, iOS and Android.

Beautifully hand-crafted levels bring the story of Leo to life in this epic adventure.

“I just returned home to find all my gold has been stolen! For some devious purpose, the thief has dropped pieces of my gold like breadcrumbs through the woods.”

“Despite this pickle of a trap, I am left with no choice but to follow the trail.”

“Whatever lies ahead, I must recover my fortune.” -Leopold

![](./doc/manual/references-leosfortune.jpeg)

![](./doc/manual/references-leosfortune2.jpg)

[***OpenGL 4.0 Shading Language Cookbook***](http://www.packtpub.com/opengl-4-0-shading-language-cookbook/book?tag=rk/opengl4-abr1/0811)

A set of recipes that demonstrates a wide of techniques for producing high-quality, real-time 3D graphics with GLSL 4.0, such as:

* Using GLSL 4.0 to implement lighting and shading techniques.
* Using the new features of GLSL 4.0 including tessellation and geometry shaders.
* Using textures in GLSL as part of a wide variety of techniques from basic texture mapping to deferred shading.

Simple, easy-to-follow examples with GLSL source code are provided, as well as a basic description of the theory behind each technique.

![](./doc/manual/references-glsl4book.jpg)

[***Outerra***](http://outerra.com/)

A 3D planetary engine for seamless planet rendering from space down to the surface. Can use arbitrary resolution of elevation data, refining it to centimetre resolution using fractal algorithms.

![](./doc/manual/references-outerra1.jpg)

![](./doc/manual/references-outerra2.jpg)

![](./doc/manual/references-outerra3.jpg)

![](./doc/manual/references-outerra4.jpg)

[***Falcor***](https://github.com/NVIDIA/Falcor)

Real-time rendering research framework by NVIDIA.

[***Cinder***](https://libcinder.org/)

Cinder is a free and open source library for professional-quality creative coding in C++.

Cinder is a C++ library for programming with aesthetic intent - the sort of development often called creative coding. This includes domains like graphics, audio, video, and computational geometry. Cinder is cross-platform, with official support for OS X, Windows, iOS, and WinRT.

Cinder is production-proven, powerful enough to be the primary tool for professionals, but still suitable for learning and experimentation. Cinder is released under the [2-Clause BSD License](http://opensource.org/licenses/BSD-2-Clause).

![](./doc/manual/references-cinder.png)

[***opencloth***](https://github.com/mmmovania/opencloth/)

A collection of source codes implementing cloth simulation algorithms in OpenGL.

Simple, easy-to-follow examples with GLSL source code, as well as a basic description of the theory behind each technique.

![](./doc/manual/references-opencloth1.png)

![](./doc/manual/references-opencloth3.png)

[***LibreOffice***](https://www.libreoffice.org/)

LibreOffice includes several applications that make it the most powerful Free and Open Source office suite on the market.

[***Are you using GLM in a project?***](mailto:[email protected])

### <a name="section10_4"></a> 10.4. Tutorials using GLM

* [Sascha Willems' Vulkan examples](https://github.com/SaschaWillems/Vulkan), Examples and demos for the new Vulkan API
* [VKTS](https://github.com/McNopper/Vulkan) Vulkan examples using VulKan ToolS (VKTS)
* [*The OpenGL Samples Pack*](http://www.g-truc.net/project-0026.html#menu), samples that show how to set up all the different new features
* [*Learning Modern 3D Graphics programming*](http://www.arcsynthesis.org/gltut/), a great OpenGL tutorial using GLM by Jason L. McKesson
* [*Morten Nobel-Jørgensen’s*](http://blog.nobel-joergensen.com/2011/04/02/glm-brilliant-math-library-for-opengl/) review and use an [*OpenGL renderer*](https://github.com/mortennobel/RenderE)
* [*Swiftless’ OpenGL tutorial*](http://www.swiftless.com/opengltuts.html) using GLM by Donald Urquhart
* [*Rastergrid*](http://rastergrid.com/blog/), many technical articles with companion programs using GLM by Daniel Rákos\
* [*OpenGL Tutorial*](http://www.opengl-tutorial.org), tutorials for OpenGL 3.1 and later
* [*OpenGL Programming on Wikibooks*](http://en.wikibooks.org/wiki/OpenGL_Programming): For beginners who are discovering OpenGL.
* [*3D Game Engine Programming*](http://3dgep.com/): Learning the latest 3D Game Engine Programming techniques.
* [Game Tutorials](http://www.gametutorials.com/opengl-4-matrices-and-glm/), graphics and game programming.
* [open.gl](https://open.gl/), OpenGL tutorial
* [c-jump](http://www.c-jump.com/bcc/common/Talk3/Math/GLM/GLM.html), GLM tutorial
* [Learn OpenGL](http://learnopengl.com/), OpenGL tutorial
* [***Are you using GLM in a tutorial?***](mailto:[email protected])

### <a name="section10_5"></a> 10.5. Equivalent for other languages

* [*cglm*](https://github.com/recp/cglm): OpenGL Mathematics (glm) for C.
* [*GlmSharp*](https://github.com/Philip-Trettner/GlmSharp): Open-source semi-generated GLM-flavored math library for .NET/C\#.
* [glm-js](https://github.com/humbletim/glm-js): JavaScript adaptation of the OpenGL Mathematics (GLM) C++ library interfaces
* [JVM OpenGL Mathematics (GLM)](https://github.com/kotlin-graphics/glm): written in Kotlin, Java compatible
* [JGLM](https://github.com/jroyalty/jglm) - Java OpenGL Mathematics Library
* [SwiftGL Math Library](https://github.com/SwiftGL/Math/blob/master/Sources/glm.swift) GLM for Swift
* [glm-go](https://github.com/jbowtie/glm-go): Simple linear algebra library similar in spirit to GLM
* [openll](https://github.com/Polkm/openll): Lua bindings for OpenGL, GLM, GLFW, OpenAL, SOIL and PhysicsFS
* [glm-rs](https://github.com/dche/glm-rs): GLSL mathematics for Rust programming language
* [glmpython](https://github.com/Queatz/glmpython): GLM math library for Python

### <a name="section10_6"></a> 10.6. Alternatives to GLM

* [*CML*](http://cmldev.net/): The CML (Configurable Math Library) is a free C++ math library for games and graphics.
* [*Eigen*](http://eigen.tuxfamily.org/): A more heavy weight math library for general linear algebra in C++.
* [*glhlib*](http://glhlib.sourceforge.net/): A much more than glu C library.
* Are you using or developing an alternative library to GLM?

### <a name="section10_7"></a> 10.7. Acknowledgements

GLM is developed and maintained by [*Christophe Riccio*](http://www.g-truc.net) but many contributors have made this project what it is.

Special thanks to:

* Ashima Arts and Stefan Gustavson for their work on [*webgl-noise*](https://github.com/ashima/webgl-noise) which has been used for GLM noises implementation.
* [*Arthur Winters*](http://athile.net/library/wiki/index.php?title=Athile_Technologies) for the C++11 and Visual C++ swizzle operators implementation and tests.
* Joshua Smith and Christoph Schied for the discussions and the experiments around the swizzle operators implementation issues.
* Guillaume Chevallereau for providing and maintaining the [*nightlight build system*](http://my.cdash.org/index.php?project=GLM).
* Ghenadii Ursachi for GLM\_GTX\_matrix\_interpolation implementation.
* Mathieu Roumillac for providing some implementation ideas.
* [*Grant James*](http://www.zeuscmd.com/) for the implementation of all combination of none-squared matrix products.
* Jesse Talavera-Greenberg for his work on the manual amount other things.
* All the GLM users that have report bugs and hence help GLM to become a great library!