Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,730 Bytes
35e2073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/glm.hpp>
#include <glm/gtx/pca.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtx/string_cast.hpp>
#include <cstdio>
#include <vector>
#if GLM_HAS_CXX11_STL == 1
#include <random>
#endif
template<typename T>
T myEpsilon();
template<>
GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; }
template<>
GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; }
template<glm::length_t D, typename T, glm::qualifier Q>
bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b, T epsilon)
{
for (int c = 0; c < D; ++c)
if (!glm::epsilonEqual(a[c], b[c], epsilon))
{
fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n",
c,
static_cast<double>(a[c]),
static_cast<double>(b[c]),
static_cast<double>(epsilon)
);
return false;
}
return true;
}
template<glm::length_t D, typename T, glm::qualifier Q>
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b, T epsilon)
{
for (int c = 0; c < D; ++c)
for (int r = 0; r < D; ++r)
if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon))
{
fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n",
c, r,
static_cast<double>(a[c][r]),
static_cast<double>(b[c][r]),
static_cast<double>(epsilon)
);
return false;
}
return true;
}
template<typename T>
GLM_INLINE bool sameSign(T const& a, T const& b)
{
return ((a >= 0) && (b >= 0)) || ((a < 0) && (b < 0));
}
template<typename T>
T failReport(T line)
{
fprintf(stderr, "Failed in line %d\n", static_cast<int>(line));
return line;
}
// Test data: 1AGA 'agarose double helix'
// https://www.rcsb.org/structure/1aga
// The fourth coordinate is randomized
namespace _1aga
{
// Fills `outTestData` with hard-coded atom positions from 1AGA
// The fourth coordinate is randomized
template<typename vec>
void fillTestData(std::vector<vec>& outTestData)
{
// x,y,z coordinates copied from RCSB PDB file of 1AGA
// w coordinate randomized with standard normal distribution
static const double _1aga[] = {
3.219, -0.637, 19.462, 2.286,
4.519, 0.024, 18.980, -0.828,
4.163, 1.425, 18.481, -0.810,
3.190, 1.341, 17.330, -0.170,
1.962, 0.991, 18.165, 0.816,
2.093, 1.952, 19.331, 0.276,
5.119, -0.701, 17.908, -0.490,
3.517, 2.147, 19.514, -0.207,
2.970, 2.609, 16.719, 0.552,
2.107, -0.398, 18.564, 0.403,
2.847, 2.618, 15.335, 0.315,
1.457, 3.124, 14.979, 0.683,
1.316, 3.291, 13.473, 0.446,
2.447, 4.155, 12.931, 1.324,
3.795, 3.614, 13.394, 0.112,
4.956, 4.494, 12.982, 0.253,
0.483, 2.217, 15.479, 1.316,
0.021, 3.962, 13.166, 1.522,
2.311, 5.497, 13.395, 0.248,
3.830, 3.522, 14.827, 0.591,
5.150, 4.461, 11.576, 0.635,
-1.057, 3.106, 13.132, 0.191,
-2.280, 3.902, 12.650, 1.135,
-3.316, 2.893, 12.151, 0.794,
-2.756, 2.092, 11.000, 0.720,
-1.839, 1.204, 11.835, -1.172,
-2.737, 0.837, 13.001, -0.313,
-1.952, 4.784, 11.578, 2.082,
-3.617, 1.972, 13.184, 0.653,
-3.744, 1.267, 10.389, -0.413,
-0.709, 2.024, 12.234, -1.747,
-3.690, 1.156, 9.005, -1.275,
-3.434, -0.300, 8.649, 0.441,
-3.508, -0.506, 7.143, 0.237,
-4.822, 0.042, 6.601, -2.856,
-5.027, 1.480, 7.064, 0.985,
-6.370, 2.045, 6.652, 0.915,
-2.162, -0.690, 9.149, 1.100,
-3.442, -1.963, 6.836, -0.081,
-5.916, -0.747, 7.065, -2.345,
-4.965, 1.556, 8.497, 0.504,
-6.439, 2.230, 5.246, 1.451,
-2.161, -2.469, 6.802, -1.171,
-2.239, -3.925, 6.320, -1.434,
-0.847, -4.318, 5.821, 0.098,
-0.434, -3.433, 4.670, -1.446,
-0.123, -2.195, 5.505, 0.182,
0.644, -2.789, 6.671, 0.865,
-3.167, -4.083, 5.248, -0.098,
0.101, -4.119, 6.854, -0.001,
0.775, -3.876, 4.059, 1.061,
-1.398, -1.625, 5.904, 0.230,
0.844, -3.774, 2.675, 1.313,
1.977, -2.824, 2.319, -0.112,
2.192, -2.785, 0.813, -0.981,
2.375, -4.197, 0.271, -0.355,
1.232, -5.093, 0.734, 0.632,
1.414, -6.539, 0.322, 0.576,
1.678, -1.527, 2.819, -1.187,
3.421, -1.999, 0.496, -1.770,
3.605, -4.750, 0.735, 1.099,
1.135, -5.078, 2.167, 0.854,
1.289, -6.691, -1.084, -0.487,
-1.057, 3.106, 22.602, -1.297,
-2.280, 3.902, 22.120, 0.376,
-3.316, 2.893, 21.621, 0.932,
-2.756, 2.092, 20.470, 1.680,
-1.839, 1.204, 21.305, 0.615,
-2.737, 0.837, 22.471, 0.899,
-1.952, 4.784, 21.048, -0.521,
-3.617, 1.972, 22.654, 0.133,
-3.744, 1.267, 19.859, 0.081,
-0.709, 2.024, 21.704, 1.420,
-3.690, 1.156, 18.475, -0.850,
-3.434, -0.300, 18.119, -0.249,
-3.508, -0.506, 16.613, 1.434,
-4.822, 0.042, 16.071, -2.466,
-5.027, 1.480, 16.534, -1.045,
-6.370, 2.045, 16.122, 1.707,
-2.162, -0.690, 18.619, -2.023,
-3.442, -1.963, 16.336, -0.304,
-5.916, -0.747, 16.535, 0.979,
-4.965, 1.556, 17.967, -1.165,
-6.439, 2.230, 14.716, 0.929,
-2.161, -2.469, 16.302, -0.234,
-2.239, -3.925, 15.820, -0.228,
-0.847, -4.318, 15.321, 1.844,
-0.434, -3.433, 14.170, 1.132,
-0.123, -2.195, 15.005, 0.211,
0.644, -2.789, 16.171, -0.632,
-3.167, -4.083, 14.748, -0.519,
0.101, -4.119, 16.354, 0.173,
0.775, -3.876, 13.559, 1.243,
-1.398, -1.625, 15.404, -0.187,
0.844, -3.774, 12.175, -1.332,
1.977, -2.824, 11.819, -1.616,
2.192, -2.785, 10.313, 1.320,
2.375, -4.197, 9.771, 0.237,
1.232, -5.093, 10.234, 0.851,
1.414, -6.539, 9.822, 1.816,
1.678, -1.527, 12.319, -1.657,
3.421, -1.999, 10.036, 1.559,
3.605, -4.750, 10.235, 0.831,
1.135, -5.078, 11.667, 0.060,
1.289, -6.691, 8.416, 1.066,
3.219, -0.637, 10.002, 2.111,
4.519, 0.024, 9.520, -0.874,
4.163, 1.425, 9.021, -1.012,
3.190, 1.341, 7.870, -0.250,
1.962, 0.991, 8.705, -1.359,
2.093, 1.952, 9.871, -0.126,
5.119, -0.701, 8.448, 0.995,
3.517, 2.147, 10.054, 0.941,
2.970, 2.609, 7.259, -0.562,
2.107, -0.398, 9.104, -0.038,
2.847, 2.618, 5.875, 0.398,
1.457, 3.124, 5.519, 0.481,
1.316, 3.291, 4.013, -0.187,
2.447, 4.155, 3.471, -0.429,
3.795, 3.614, 3.934, -0.432,
4.956, 4.494, 3.522, -0.788,
0.483, 2.217, 6.019, -0.923,
0.021, 3.962, 3.636, -0.316,
2.311, 5.497, 3.935, -1.917,
3.830, 3.522, 5.367, -0.302,
5.150, 4.461, 2.116, -1.615
};
static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double));
outTestData.resize(_1agaSize);
for(glm::length_t i = 0; i < _1agaSize; ++i)
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]);
}
// All reference values computed separately using symbolic precision
// https://github.com/sgrottel/exp-pca-precision
// This applies to all functions named: `_1aga::expected*()`
GLM_INLINE glm::dmat4 const& expectedCovarData()
{
static const glm::dmat4 covar4x4d(
9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846,
-0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080,
-4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545,
0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803
);
return covar4x4d;
}
template<glm::length_t D>
GLM_INLINE glm::vec<D, double, glm::defaultp> const& expectedEigenvalues();
template<>
GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>()
{
static const glm::dvec2 evals2(
9.62447289926297399961763301774251330057894539467032275382255,
9.62430715969394210015560961264297422776572580714373620309355
);
return evals2;
}
template<>
GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>()
{
static const glm::dvec3 evals3(
37.3274494274683425233695502581182052836449738530676689472257,
9.62431434161498823505729817436585077939509766554969096873168,
7.92550178622027216422369326567668971675332732240052872097887
);
return evals3;
}
template<>
GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>()
{
static const glm::dvec4 evals4(
37.3477389918792213596879452204499702406947817221901007885630,
9.62470688921105696017807313860277172063600080413412567999700,
7.94017075281634999342344275928070533134615133171969063657713,
1.06170863996588365446060186982477896078741484440002343404155
);
return evals4;
}
template<glm::length_t D>
GLM_INLINE glm::mat<D, D, double, glm::defaultp> const& expectedEigenvectors();
template<>
GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>()
{
static const glm::dmat2 evecs2(
glm::dvec2(
-0.503510847492551904906870957742619139443409162857537237123308,
1
),
glm::dvec2(
1.98605453086051402895741763848787613048533838388005162794043,
1
)
);
return evecs2;
}
template<>
GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>()
{
static const glm::dmat3 evecs3(
glm::dvec3(
-0.154972738414395866005286433008304444294405085038689821864654,
0.193161285869815165989799191097521722568079378840201629578695,
1
),
glm::dvec3(
-158565.112775416943154745839952575022429933119522746586149868,
-127221.506282351944358932458687410410814983610301927832439675,
1
),
glm::dvec3(
2.52702248596556806145700361724323960543858113426446460406536,
-3.14959802931313870497377546974185300816008580801457419079412,
1
)
);
return evecs3;
}
template<>
GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>()
{
static const glm::dmat4 evecs4(
glm::dvec4(
-6.35322390281037045217295803597357821705371650876122113027264,
7.91546394153385394517767054617789939529794642646629201212056,
41.0301543819240679808549819457450130787045236815736490549663,
1
),
glm::dvec4(
-114.622418941087829756565311692197154422302604224781253861297,
-92.2070185807065289900871215218752013659402949497379896153118,
0.0155846091025912430932734548933329458404665760587569100867246,
1
),
glm::dvec4(
13.1771887761559019483954743159026938257325190511642952175789,
-16.3688257459634877666638419310116970616615816436949741766895,
5.17386502341472097227408249233288958059579189051394773143190,
1
),
glm::dvec4(
-0.0192777078948229800494895064532553117703859768210647632969276,
0.0348034950916108873629241563077465542944938906271231198634442,
-0.0340715609308469289267379681032545422644143611273049912226126,
1
)
);
return evecs4;
}
} // namespace _1aga
// Compute center of gravity
template<typename vec>
vec computeCenter(const std::vector<vec>& testData)
{
double c[4];
std::fill(c, c + vec::length(), 0.0);
typename std::vector<vec>::const_iterator e = testData.end();
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i)
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
c[d] += static_cast<double>((*i)[d]);
vec cVec(0);
for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d)
cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size()));
return cVec;
}
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search.
template<glm::length_t D, typename T, glm::qualifier Q>
int testEigenvalueSort()
{
// Test input data: four arbitrary values
static const glm::vec<D, T, Q> refVal(
glm::vec<4, T, Q>(
10, 8, 6, 4
)
);
// Test input data: four arbitrary vectors, which can be matched to the above values
static const glm::mat<D, D, T, Q> refVec(
glm::mat<4, 4, T, Q>(
10, 20, 5, 40,
8, 16, 4, 32,
6, 12, 3, 24,
4, 8, 2, 16
)
);
// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4)
static const int permutationCount[] = {
0,
1,
2,
6,
24
};
// The permutations t perform, based on `D` (1 <= D <= 4)
static const glm::ivec4 permutation[] = {
glm::ivec4(0, 1, 2, 3),
glm::ivec4(1, 0, 2, 3), // last for D = 2
glm::ivec4(0, 2, 1, 3),
glm::ivec4(1, 2, 0, 3),
glm::ivec4(2, 0, 1, 3),
glm::ivec4(2, 1, 0, 3), // last for D = 3
glm::ivec4(0, 1, 3, 2),
glm::ivec4(1, 0, 3, 2),
glm::ivec4(0, 2, 3, 1),
glm::ivec4(1, 2, 3, 0),
glm::ivec4(2, 0, 3, 1),
glm::ivec4(2, 1, 3, 0),
glm::ivec4(0, 3, 1, 2),
glm::ivec4(1, 3, 0, 2),
glm::ivec4(0, 3, 2, 1),
glm::ivec4(1, 3, 2, 0),
glm::ivec4(2, 3, 0, 1),
glm::ivec4(2, 3, 1, 0),
glm::ivec4(3, 0, 1, 2),
glm::ivec4(3, 1, 0, 2),
glm::ivec4(3, 0, 2, 1),
glm::ivec4(3, 1, 2, 0),
glm::ivec4(3, 2, 0, 1),
glm::ivec4(3, 2, 1, 0) // last for D = 4
};
// initial sanity check
if(!vectorEpsilonEqual(refVal, refVal, myEpsilon<T>()))
return failReport(__LINE__);
if(!matrixEpsilonEqual(refVec, refVec, myEpsilon<T>()))
return failReport(__LINE__);
// Exhaustive search through all permutations
for(int p = 0; p < permutationCount[D]; ++p)
{
glm::vec<D, T, Q> testVal;
glm::mat<D, D, T, Q> testVec;
for(int i = 0; i < D; ++i)
{
testVal[i] = refVal[permutation[p][i]];
testVec[i] = refVec[permutation[p][i]];
}
glm::sortEigenvalues(testVal, testVec);
if (!vectorEpsilonEqual(testVal, refVal, myEpsilon<T>()))
return failReport(__LINE__);
if (!matrixEpsilonEqual(testVec, refVec, myEpsilon<T>()))
return failReport(__LINE__);
}
return 0;
}
// Test covariance matrix creation functions
template<glm::length_t D, typename T, glm::qualifier Q>
int testCovar(
#if GLM_HAS_CXX11_STL == 1
glm::length_t dataSize, unsigned int randomEngineSeed
#else // GLM_HAS_CXX11_STL == 1
glm::length_t, unsigned int
#endif // GLM_HAS_CXX11_STL == 1
)
{
typedef glm::vec<D, T, Q> vec;
typedef glm::mat<D, D, T, Q> mat;
// #1: test expected result with fixed data set
std::vector<vec> testData;
_1aga::fillTestData(testData);
// compute center of gravity
vec center = computeCenter(testData);
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center);
if(!matrixEpsilonEqual(covarMat, mat(_1aga::expectedCovarData()), myEpsilon<T>()))
{
fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str());
return failReport(__LINE__);
}
// #2: test function variant consitency with random data
#if GLM_HAS_CXX11_STL == 1
std::default_random_engine rndEng(randomEngineSeed);
std::normal_distribution<T> normalDist;
testData.resize(dataSize);
// some common offset of all data
T offset[D];
for(glm::length_t d = 0; d < D; ++d)
offset[d] = normalDist(rndEng);
// init data
for(glm::length_t i = 0; i < dataSize; ++i)
for(glm::length_t d = 0; d < D; ++d)
testData[i][d] = offset[d] + normalDist(rndEng);
center = computeCenter(testData);
std::vector<vec> centeredTestData;
centeredTestData.reserve(testData.size());
typename std::vector<vec>::const_iterator e = testData.end();
for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i)
centeredTestData.push_back((*i) - center);
mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size());
mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end());
mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center);
mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center);
if(!matrixEpsilonEqual(c1, c2, myEpsilon<T>()))
return failReport(__LINE__);
if(!matrixEpsilonEqual(c1, c3, myEpsilon<T>()))
return failReport(__LINE__);
if(!matrixEpsilonEqual(c1, c4, myEpsilon<T>()))
return failReport(__LINE__);
#endif // GLM_HAS_CXX11_STL == 1
return 0;
}
// Computes eigenvalues and eigenvectors from well-known covariance matrix
template<glm::length_t D, typename T, glm::qualifier Q>
int testEigenvectors(T epsilon)
{
typedef glm::vec<D, T, Q> vec;
typedef glm::mat<D, D, T, Q> mat;
// test expected result with fixed data set
std::vector<vec> testData;
mat covarMat(_1aga::expectedCovarData());
vec eigenvalues;
mat eigenvectors;
unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors);
if(c != D)
return failReport(__LINE__);
glm::sortEigenvalues(eigenvalues, eigenvectors);
if (!vectorEpsilonEqual(eigenvalues, vec(_1aga::expectedEigenvalues<D>()), epsilon))
return failReport(__LINE__);
for (int i = 0; i < D; ++i)
{
vec act = glm::normalize(eigenvectors[i]);
vec exp = glm::normalize(_1aga::expectedEigenvectors<D>()[i]);
if (!sameSign(act[0], exp[0])) exp = -exp;
if (!vectorEpsilonEqual(act, exp, epsilon))
return failReport(__LINE__);
}
return 0;
}
// A simple small smoke test:
// - a uniformly sampled block
// - reconstruct main axes
// - check order of eigenvalues equals order of extends of block in direction of main axes
int smokeTest()
{
using glm::vec3;
using glm::mat3;
std::vector<vec3> pts;
pts.reserve(11 * 15 * 7);
for(int x = -5; x <= 5; ++x)
for(int y = -7; y <= 7; ++y)
for(int z = -3; z <= 3; ++z)
pts.push_back(vec3(x, y, z));
mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size());
mat3 eVec;
vec3 eVal;
int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec);
if(eCnt != 3)
return failReport(__LINE__);
// sort eVec by decending eVal
if(eVal[0] < eVal[1])
{
std::swap(eVal[0], eVal[1]);
std::swap(eVec[0], eVec[1]);
}
if(eVal[0] < eVal[2])
{
std::swap(eVal[0], eVal[2]);
std::swap(eVec[0], eVec[2]);
}
if(eVal[1] < eVal[2])
{
std::swap(eVal[1], eVal[2]);
std::swap(eVec[1], eVec[2]);
}
if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon<float>()))
return failReport(__LINE__);
if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon<float>()))
return failReport(__LINE__);
if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon<float>()))
return failReport(__LINE__);
return 0;
}
#if GLM_HAS_CXX11_STL == 1
int rndTest(unsigned int randomEngineSeed)
{
std::default_random_engine rndEng(randomEngineSeed);
std::normal_distribution<double> normalDist;
// construct orthonormal system
glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
double l = glm::length(x);
while(l < myEpsilon<double>())
x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
x = glm::normalize(x);
glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
l = glm::length(y);
while(l < myEpsilon<double>())
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
while(glm::abs(glm::dot(x, y)) < myEpsilon<double>())
{
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
while(l < myEpsilon<double>())
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
}
y = glm::normalize(y);
glm::dvec3 z = glm::normalize(glm::cross(x, y));
y = glm::normalize(glm::cross(z, x));
// generate input point data
std::vector<glm::dvec3> ptData;
static const int pattern[] = {
8, 0, 0,
4, 1, 2,
0, 2, 0,
0, 0, 4
};
glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng));
for(int p = 0; p < 4; ++p)
for(int xs = 1; xs >= -1; xs -= 2)
for(int ys = 1; ys >= -1; ys -= 2)
for(int zs = 1; zs >= -1; zs -= 2)
ptData.push_back(
offset
+ x * static_cast<double>(pattern[p * 3 + 0] * xs)
+ y * static_cast<double>(pattern[p * 3 + 1] * ys)
+ z * static_cast<double>(pattern[p * 3 + 2] * zs));
// perform PCA:
glm::dvec3 center = computeCenter(ptData);
glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center);
glm::dvec3 evals;
glm::dmat3 evecs;
int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs);
if(evcnt != 3)
return failReport(__LINE__);
glm::sortEigenvalues(evals, evecs);
if (!sameSign(evecs[0][0], x[0])) evecs[0] = -evecs[0];
if(!vectorEpsilonEqual(x, evecs[0], myEpsilon<double>()))
return failReport(__LINE__);
if (!sameSign(evecs[2][0], y[0])) evecs[2] = -evecs[2];
if (!vectorEpsilonEqual(y, evecs[2], myEpsilon<double>()))
return failReport(__LINE__);
if (!sameSign(evecs[1][0], z[0])) evecs[1] = -evecs[1];
if (!vectorEpsilonEqual(z, evecs[1], myEpsilon<double>()))
return failReport(__LINE__);
return 0;
}
#endif // GLM_HAS_CXX11_STL == 1
int main()
{
int error(0);
// A small smoke test to fail early with most problems
if(smokeTest())
return failReport(__LINE__);
// test sorting utility.
if(testEigenvalueSort<2, float, glm::defaultp>() != 0)
error = failReport(__LINE__);
if(testEigenvalueSort<2, double, glm::defaultp>() != 0)
error = failReport(__LINE__);
if(testEigenvalueSort<3, float, glm::defaultp>() != 0)
error = failReport(__LINE__);
if(testEigenvalueSort<3, double, glm::defaultp>() != 0)
error = failReport(__LINE__);
if(testEigenvalueSort<4, float, glm::defaultp>() != 0)
error = failReport(__LINE__);
if(testEigenvalueSort<4, double, glm::defaultp>() != 0)
error = failReport(__LINE__);
if (error != 0)
return error;
// Note: the random engine uses a fixed seed to create consistent and reproducible test data
// test covariance matrix computation from different data sources
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0)
error = failReport(__LINE__);
if(testCovar<2, double, glm::defaultp>(100, 42) != 0)
error = failReport(__LINE__);
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0)
error = failReport(__LINE__);
if(testCovar<3, double, glm::defaultp>(100, 815) != 0)
error = failReport(__LINE__);
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0)
error = failReport(__LINE__);
if(testCovar<4, double, glm::defaultp>(100, 174) != 0)
error = failReport(__LINE__);
if (error != 0)
return error;
// test PCA eigen vector reconstruction
// Expected epsilon precision evaluated separately:
// https://github.com/sgrottel/exp-pca-precision
if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0)
error = failReport(__LINE__);
if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0)
error = failReport(__LINE__);
if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0)
error = failReport(__LINE__);
if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0)
error = failReport(__LINE__);
if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0)
error = failReport(__LINE__);
if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0)
error = failReport(__LINE__);
if(error != 0)
return error;
// Final tests with randomized data
#if GLM_HAS_CXX11_STL == 1
if(rndTest(12345) != 0)
error = failReport(__LINE__);
if(rndTest(42) != 0)
error = failReport(__LINE__);
if (error != 0)
return error;
#endif // GLM_HAS_CXX11_STL == 1
return error;
}
|