kairunwen's picture
add code
35e2073
raw
history blame
4.8 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import math
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
from utils.pose_utils import get_camera_from_tensor, quadmultiply
def render(
viewpoint_camera,
pc: GaussianModel,
pipe,
bg_color: torch.Tensor,
scaling_modifier=1.0,
override_color=None,
camera_pose=None,
):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = (
torch.zeros_like(
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
)
+ 0
)
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
# Set camera pose as identity. Then, we will transform the Gaussians around camera_pose
w2c = torch.eye(4).cuda()
projmatrix = (
w2c.unsqueeze(0).bmm(viewpoint_camera.projection_matrix.unsqueeze(0))
).squeeze(0)
camera_pos = w2c.inverse()[3, :3]
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
# viewmatrix=viewpoint_camera.world_view_transform,
# projmatrix=viewpoint_camera.full_proj_transform,
viewmatrix=w2c,
projmatrix=projmatrix,
sh_degree=pc.active_sh_degree,
# campos=viewpoint_camera.camera_center,
campos=camera_pos,
prefiltered=False,
debug=pipe.debug,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
# means3D = pc.get_xyz
rel_w2c = get_camera_from_tensor(camera_pose)
# Transform mean and rot of Gaussians to camera frame
gaussians_xyz = pc._xyz.clone()
gaussians_rot = pc._rotation.clone()
xyz_ones = torch.ones(gaussians_xyz.shape[0], 1).cuda().float()
xyz_homo = torch.cat((gaussians_xyz, xyz_ones), dim=1)
gaussians_xyz_trans = (rel_w2c @ xyz_homo.T).T[:, :3]
gaussians_rot_trans = quadmultiply(camera_pose[:4], gaussians_rot)
means3D = gaussians_xyz_trans
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = gaussians_rot_trans # pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if override_color is None:
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(
-1, 3, (pc.max_sh_degree + 1) ** 2
)
dir_pp = pc.get_xyz - viewpoint_camera.camera_center.repeat(
pc.get_features.shape[0], 1
)
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
shs = pc.get_features
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii = rasterizer(
means3D=means3D,
means2D=means2D,
shs=shs,
colors_precomp=colors_precomp,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=cov3D_precomp,
)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {
"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter": radii > 0,
"radii": radii,
}