InstantSplat / utils /camera_utils.py
kairunwen's picture
add code
35e2073
raw
history blame
8.03 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
from scene.cameras import Camera
import numpy as np
from utils.general_utils import PILtoTorch
from utils.graphics_utils import fov2focal
import scipy
import matplotlib.pyplot as plt
WARNED = False
def loadCam(args, id, cam_info, resolution_scale):
orig_w, orig_h = cam_info.image.size
if args.resolution in [1, 2, 4, 8]:
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
else: # should be a type that converts to float
if args.resolution == -1:
if orig_w > 1600:
global WARNED
if not WARNED:
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
WARNED = True
global_down = orig_w / 1600
else:
global_down = 1
else:
global_down = orig_w / args.resolution
scale = float(global_down) * float(resolution_scale)
resolution = (int(orig_w / scale), int(orig_h / scale))
resized_image_rgb = PILtoTorch(cam_info.image, resolution)
gt_image = resized_image_rgb[:3, ...]
loaded_mask = None
if resized_image_rgb.shape[1] == 4:
loaded_mask = resized_image_rgb[3:4, ...]
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
image=gt_image, gt_alpha_mask=loaded_mask,
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
camera_list = []
for id, c in enumerate(cam_infos):
camera_list.append(loadCam(args, id, c, resolution_scale))
return camera_list
def camera_to_JSON(id, camera : Camera):
Rt = np.zeros((4, 4))
Rt[:3, :3] = camera.R.transpose()
Rt[:3, 3] = camera.T
Rt[3, 3] = 1.0
W2C = np.linalg.inv(Rt)
pos = W2C[:3, 3]
rot = W2C[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'id' : id,
'img_name' : camera.image_name,
'width' : camera.width,
'height' : camera.height,
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy' : fov2focal(camera.FovY, camera.height),
'fx' : fov2focal(camera.FovX, camera.width)
}
return camera_entry
def transform_poses_pca(poses):
"""Transforms poses so principal components lie on XYZ axes.
Args:
poses: a (N, 3, 4) array containing the cameras' camera to world transforms.
Returns:
A tuple (poses, transform), with the transformed poses and the applied
camera_to_world transforms.
"""
t = poses[:, :3, 3]
t_mean = t.mean(axis=0)
t = t - t_mean
eigval, eigvec = np.linalg.eig(t.T @ t)
# Sort eigenvectors in order of largest to smallest eigenvalue.
inds = np.argsort(eigval)[::-1]
eigvec = eigvec[:, inds]
rot = eigvec.T
if np.linalg.det(rot) < 0:
rot = np.diag(np.array([1, 1, -1])) @ rot
transform = np.concatenate([rot, rot @ -t_mean[:, None]], -1)
poses_recentered = unpad_poses(transform @ pad_poses(poses))
transform = np.concatenate([transform, np.eye(4)[3:]], axis=0)
# Flip coordinate system if z component of y-axis is negative
if poses_recentered.mean(axis=0)[2, 1] < 0:
poses_recentered = np.diag(np.array([1, -1, -1])) @ poses_recentered
transform = np.diag(np.array([1, -1, -1, 1])) @ transform
# Just make sure it's it in the [-1, 1]^3 cube
scale_factor = 1. / np.max(np.abs(poses_recentered[:, :3, 3]))
poses_recentered[:, :3, 3] *= scale_factor
transform = np.diag(np.array([scale_factor] * 3 + [1])) @ transform
return poses_recentered, transform
def generate_interpolated_path(poses, n_interp, spline_degree=5,
smoothness=.03, rot_weight=.1):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=False)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
### Additional operation
# inter_poses = []
# for pose in poses:
# tmp_pose = np.eye(4)
# tmp_pose[:3] = np.concatenate([pose.R.T, pose.T[:, None]], 1)
# tmp_pose = np.linalg.inv(tmp_pose)
# tmp_pose[:, 1:3] *= -1
# inter_poses.append(tmp_pose)
# inter_poses = np.stack(inter_poses, 0)
# poses, transform = transform_poses_pca(inter_poses)
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(points,
n_interp * (points.shape[0] - 1),
k=spline_degree,
s=smoothness)
return points_to_poses(new_points)
def viewmatrix(lookdir, up, position):
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def normalize(x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def pad_poses(p):
"""Pad [..., 3, 4] pose matrices with a homogeneous bottom row [0,0,0,1]."""
bottom = np.broadcast_to([0, 0, 0, 1.], p[..., :1, :4].shape)
return np.concatenate([p[..., :3, :4], bottom], axis=-2)
def unpad_poses(p):
"""Remove the homogeneous bottom row from [..., 4, 4] pose matrices."""
return p[..., :3, :4]
def visualizer(camera_poses, colors, save_path="/mnt/data/1.png"):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
for pose, color in zip(camera_poses, colors):
rotation = pose[:3, :3]
translation = pose[:3, 3] # Corrected to use 3D translation component
camera_positions = np.einsum(
"...ij,...j->...i", np.linalg.inv(rotation), -translation
)
ax.scatter(
camera_positions[0],
camera_positions[1],
camera_positions[2],
c=color,
marker="o",
)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_title("Camera Poses")
plt.savefig(save_path)
plt.close()
return save_path