Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import torch | |
# from lietorch import SO3, SE3, Sim3, LieGroupParameter | |
import numpy as np | |
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation | |
from torch import nn | |
import os | |
from utils.system_utils import mkdir_p | |
from plyfile import PlyData, PlyElement | |
from utils.sh_utils import RGB2SH | |
from simple_knn._C import distCUDA2 | |
from utils.graphics_utils import BasicPointCloud | |
from utils.general_utils import strip_symmetric, build_scaling_rotation | |
from scipy.spatial.transform import Rotation as R | |
from utils.pose_utils import rotation2quad, get_tensor_from_camera | |
from utils.graphics_utils import getWorld2View2 | |
def quaternion_to_rotation_matrix(quaternion): | |
""" | |
Convert a quaternion to a rotation matrix. | |
Parameters: | |
- quaternion: A tensor of shape (..., 4) representing quaternions. | |
Returns: | |
- A tensor of shape (..., 3, 3) representing rotation matrices. | |
""" | |
# Ensure quaternion is of float type for computation | |
quaternion = quaternion.float() | |
# Normalize the quaternion to unit length | |
quaternion = quaternion / quaternion.norm(p=2, dim=-1, keepdim=True) | |
# Extract components | |
w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3] | |
# Compute rotation matrix components | |
xx, yy, zz = x * x, y * y, z * z | |
xy, xz, yz = x * y, x * z, y * z | |
xw, yw, zw = x * w, y * w, z * w | |
# Assemble the rotation matrix | |
R = torch.stack([ | |
torch.stack([1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw)], dim=-1), | |
torch.stack([ 2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw)], dim=-1), | |
torch.stack([ 2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy)], dim=-1) | |
], dim=-2) | |
return R | |
class GaussianModel: | |
def setup_functions(self): | |
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): | |
L = build_scaling_rotation(scaling_modifier * scaling, rotation) | |
actual_covariance = L @ L.transpose(1, 2) | |
symm = strip_symmetric(actual_covariance) | |
return symm | |
self.scaling_activation = torch.exp | |
self.scaling_inverse_activation = torch.log | |
self.covariance_activation = build_covariance_from_scaling_rotation | |
self.opacity_activation = torch.sigmoid | |
self.inverse_opacity_activation = inverse_sigmoid | |
self.rotation_activation = torch.nn.functional.normalize | |
def __init__(self, sh_degree : int): | |
self.active_sh_degree = 0 | |
self.max_sh_degree = sh_degree | |
self._xyz = torch.empty(0) | |
self._features_dc = torch.empty(0) | |
self._features_rest = torch.empty(0) | |
self._scaling = torch.empty(0) | |
self._rotation = torch.empty(0) | |
self._opacity = torch.empty(0) | |
self.max_radii2D = torch.empty(0) | |
self.xyz_gradient_accum = torch.empty(0) | |
self.denom = torch.empty(0) | |
self.optimizer = None | |
self.percent_dense = 0 | |
self.spatial_lr_scale = 0 | |
self.setup_functions() | |
def capture(self): | |
return ( | |
self.active_sh_degree, | |
self._xyz, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
self.xyz_gradient_accum, | |
self.denom, | |
self.optimizer.state_dict(), | |
self.spatial_lr_scale, | |
self.P, | |
) | |
def restore(self, model_args, training_args): | |
(self.active_sh_degree, | |
self._xyz, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
xyz_gradient_accum, | |
denom, | |
opt_dict, | |
self.spatial_lr_scale, | |
self.P) = model_args | |
self.training_setup(training_args) | |
self.xyz_gradient_accum = xyz_gradient_accum | |
self.denom = denom | |
self.optimizer.load_state_dict(opt_dict) | |
def get_scaling(self): | |
return self.scaling_activation(self._scaling) | |
def get_rotation(self): | |
return self.rotation_activation(self._rotation) | |
def get_xyz(self): | |
return self._xyz | |
def compute_relative_world_to_camera(self, R1, t1, R2, t2): | |
# Create a row of zeros with a one at the end, for homogeneous coordinates | |
zero_row = np.array([[0, 0, 0, 1]], dtype=np.float32) | |
# Compute the inverse of the first extrinsic matrix | |
E1_inv = np.hstack([R1.T, -R1.T @ t1.reshape(-1, 1)]) # Transpose and reshape for correct dimensions | |
E1_inv = np.vstack([E1_inv, zero_row]) # Append the zero_row to make it a 4x4 matrix | |
# Compute the second extrinsic matrix | |
E2 = np.hstack([R2, -R2 @ t2.reshape(-1, 1)]) # No need to transpose R2 | |
E2 = np.vstack([E2, zero_row]) # Append the zero_row to make it a 4x4 matrix | |
# Compute the relative transformation | |
E_rel = E2 @ E1_inv | |
return E_rel | |
def init_RT_seq(self, cam_list): | |
poses =[] | |
for cam in cam_list[1.0]: | |
p = get_tensor_from_camera(cam.world_view_transform.transpose(0, 1)) # R T -> quat t | |
poses.append(p) | |
poses = torch.stack(poses) | |
self.P = poses.cuda().requires_grad_(True) | |
def get_RT(self, idx): | |
pose = self.P[idx] | |
return pose | |
def get_RT_test(self, idx): | |
pose = self.test_P[idx] | |
return pose | |
def get_features(self): | |
features_dc = self._features_dc | |
features_rest = self._features_rest | |
return torch.cat((features_dc, features_rest), dim=1) | |
def get_opacity(self): | |
return self.opacity_activation(self._opacity) | |
def get_covariance(self, scaling_modifier = 1): | |
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) | |
def oneupSHdegree(self): | |
if self.active_sh_degree < self.max_sh_degree: | |
self.active_sh_degree += 1 | |
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): | |
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # gradio | |
self.spatial_lr_scale = spatial_lr_scale | |
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() | |
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) | |
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() | |
features[:, :3, 0 ] = fused_color | |
features[:, 3:, 1:] = 0.0 | |
print("Number of points at initialisation : ", fused_point_cloud.shape[0]) | |
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) | |
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) | |
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") | |
rots[:, 0] = 1 | |
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) | |
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) | |
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._scaling = nn.Parameter(scales.requires_grad_(True)) | |
self._rotation = nn.Parameter(rots.requires_grad_(True)) | |
self._opacity = nn.Parameter(opacities.requires_grad_(True)) | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
def training_setup(self, training_args): | |
self.percent_dense = training_args.percent_dense | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
l = [ | |
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, | |
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, | |
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, | |
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, | |
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, | |
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}, | |
] | |
l_cam = [{'params': [self.P],'lr': training_args.rotation_lr*0.1, "name": "pose"},] | |
l += l_cam | |
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) | |
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, | |
lr_final=training_args.position_lr_final*self.spatial_lr_scale, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.position_lr_max_steps) | |
self.cam_scheduler_args = get_expon_lr_func( | |
# lr_init=0, | |
# lr_final=0, | |
lr_init=training_args.rotation_lr*0.1, | |
lr_final=training_args.rotation_lr*0.001, | |
# lr_init=training_args.position_lr_init*self.spatial_lr_scale*10, | |
# lr_final=training_args.position_lr_final*self.spatial_lr_scale*10, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=1000) | |
def update_learning_rate(self, iteration): | |
''' Learning rate scheduling per step ''' | |
for param_group in self.optimizer.param_groups: | |
if param_group["name"] == "pose": | |
lr = self.cam_scheduler_args(iteration) | |
# print("pose learning rate", iteration, lr) | |
param_group['lr'] = lr | |
if param_group["name"] == "xyz": | |
lr = self.xyz_scheduler_args(iteration) | |
param_group['lr'] = lr | |
# return lr | |
def construct_list_of_attributes(self): | |
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] | |
# All channels except the 3 DC | |
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): | |
l.append('f_dc_{}'.format(i)) | |
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): | |
l.append('f_rest_{}'.format(i)) | |
l.append('opacity') | |
for i in range(self._scaling.shape[1]): | |
l.append('scale_{}'.format(i)) | |
for i in range(self._rotation.shape[1]): | |
l.append('rot_{}'.format(i)) | |
return l | |
def save_ply(self, path): | |
mkdir_p(os.path.dirname(path)) | |
xyz = self._xyz.detach().cpu().numpy() | |
normals = np.zeros_like(xyz) | |
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
opacities = self._opacity.detach().cpu().numpy() | |
scale = self._scaling.detach().cpu().numpy() | |
rotation = self._rotation.detach().cpu().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] | |
elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def reset_opacity(self): | |
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) | |
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") | |
self._opacity = optimizable_tensors["opacity"] | |
def load_ply(self, path): | |
plydata = PlyData.read(path) | |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
np.asarray(plydata.elements[0]["y"]), | |
np.asarray(plydata.elements[0]["z"])), axis=1) | |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
features_dc = np.zeros((xyz.shape[0], 3, 1)) | |
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] | |
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) | |
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 | |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) | |
for idx, attr_name in enumerate(extra_f_names): | |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) | |
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) | |
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) | |
scales = np.zeros((xyz.shape[0], len(scale_names))) | |
for idx, attr_name in enumerate(scale_names): | |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] | |
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) | |
rots = np.zeros((xyz.shape[0], len(rot_names))) | |
for idx, attr_name in enumerate(rot_names): | |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self.active_sh_degree = self.max_sh_degree | |
def replace_tensor_to_optimizer(self, tensor, name): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
if group["name"] == name: | |
# breakpoint() | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
stored_state["exp_avg"] = torch.zeros_like(tensor) | |
stored_state["exp_avg_sq"] = torch.zeros_like(tensor) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def _prune_optimizer(self, mask): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = stored_state["exp_avg"][mask] | |
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def prune_points(self, mask): | |
valid_points_mask = ~mask | |
optimizable_tensors = self._prune_optimizer(valid_points_mask) | |
self._xyz = optimizable_tensors["xyz"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] | |
self.denom = self.denom[valid_points_mask] | |
self.max_radii2D = self.max_radii2D[valid_points_mask] | |
def cat_tensors_to_optimizer(self, tensors_dict): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
assert len(group["params"]) == 1 | |
extension_tensor = tensors_dict[group["name"]] | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) | |
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): | |
d = {"xyz": new_xyz, | |
"f_dc": new_features_dc, | |
"f_rest": new_features_rest, | |
"opacity": new_opacities, | |
"scaling" : new_scaling, | |
"rotation" : new_rotation} | |
optimizable_tensors = self.cat_tensors_to_optimizer(d) | |
self._xyz = optimizable_tensors["xyz"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): | |
n_init_points = self.get_xyz.shape[0] | |
# Extract points that satisfy the gradient condition | |
padded_grad = torch.zeros((n_init_points), device="cuda") | |
padded_grad[:grads.shape[0]] = grads.squeeze() | |
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) | |
stds = self.get_scaling[selected_pts_mask].repeat(N,1) | |
means =torch.zeros((stds.size(0), 3),device="cuda") | |
samples = torch.normal(mean=means, std=stds) | |
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) | |
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) | |
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) | |
new_rotation = self._rotation[selected_pts_mask].repeat(N,1) | |
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) | |
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) | |
new_opacity = self._opacity[selected_pts_mask].repeat(N,1) | |
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation) | |
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) | |
self.prune_points(prune_filter) | |
def densify_and_clone(self, grads, grad_threshold, scene_extent): | |
# Extract points that satisfy the gradient condition | |
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) | |
new_xyz = self._xyz[selected_pts_mask] | |
new_features_dc = self._features_dc[selected_pts_mask] | |
new_features_rest = self._features_rest[selected_pts_mask] | |
new_opacities = self._opacity[selected_pts_mask] | |
new_scaling = self._scaling[selected_pts_mask] | |
new_rotation = self._rotation[selected_pts_mask] | |
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation) | |
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): | |
grads = self.xyz_gradient_accum / self.denom | |
grads[grads.isnan()] = 0.0 | |
# self.densify_and_clone(grads, max_grad, extent) | |
# self.densify_and_split(grads, max_grad, extent) | |
prune_mask = (self.get_opacity < min_opacity).squeeze() | |
if max_screen_size: | |
big_points_vs = self.max_radii2D > max_screen_size | |
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent | |
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) | |
self.prune_points(prune_mask) | |
torch.cuda.empty_cache() | |
def add_densification_stats(self, viewspace_point_tensor, update_filter): | |
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) | |
self.denom[update_filter] += 1 |