Spaces:
Running
Running
import faiss | |
import numpy as np | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
import streamlit as st | |
import os | |
os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
def load_model(): | |
model = SentenceTransformer("sbintuitions/sarashina-embedding-v1-1b") | |
return model | |
def load_title_data(): | |
title_df = pd.read_csv('anlp2025.tsv', names=["pid", "title"], sep="\t") | |
return title_df | |
def load_title_embeddings(): | |
npz_comp = np.load("anlp2025.npz") | |
title_embeddings = npz_comp["arr_0"] | |
return title_embeddings | |
def get_retrieval_results(index, input_text, top_k, model, title_df): | |
query_embeddings = model.encode([input_text]) | |
_, ids = index.search(x=query_embeddings, k=top_k) | |
retrieved_titles = [] | |
retrieved_pids = [] | |
for id in ids[0]: | |
retrieved_titles.append(title_df.loc[id, "title"]) | |
retrieved_pids.append(title_df.loc[id, "pid"]) | |
df = pd.DataFrame({"pids": retrieved_pids, "paper": retrieved_titles}) | |
return df | |
if __name__ == "__main__": | |
model = load_model() | |
title_df = load_title_data() | |
title_embeddings = load_title_embeddings() | |
index = faiss.IndexFlatL2(1792) | |
index.add(title_embeddings) | |
st.markdown("## NLP2025 論文検索") | |
input_text = st.text_input('query', '', placeholder='') | |
top_k = st.number_input('top_k', min_value=1, value=10, step=1) | |
if st.button('検索'): | |
stripped_input_text = input_text.strip() | |
df = get_retrieval_results(index, stripped_input_text, top_k, model, title_df) | |
st.table(df) |