File size: 6,774 Bytes
afd4069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gc
import os
from copy import deepcopy
from typing import Dict, Union, Optional

import torch
from torch.nn import Module
from transformers import AutoModel, PreTrainedModel, PreTrainedTokenizer
from transformers.generation.logits_process import LogitsProcessor


def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
    # transformer.word_embeddings 占用1层
    # transformer.final_layernorm 和 lm_head 占用1层
    # transformer.layers 占用 28 层
    # 总共30层分配到num_gpus张卡上
    num_trans_layers = 28
    per_gpu_layers = 30 / num_gpus

    # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
    # windows下 model.device 会被设置成 transformer.word_embeddings.device
    # linux下 model.device 会被设置成 lm_head.device
    # 在调用chat或者stream_chat时,input_ids会被放到model.device上
    # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
    # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
    # 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py
    # 仅此处做少许修改以支持ChatGLM3
    device_map = {
        'transformer.embedding.word_embeddings': 0,
        'transformer.encoder.final_layernorm': 0,
        'transformer.output_layer': 0,
        'transformer.rotary_pos_emb': 0,
        'lm_head': 0
    }

    used = 2
    gpu_target = 0
    for i in range(num_trans_layers):
        if used >= per_gpu_layers:
            gpu_target += 1
            used = 0
        assert gpu_target < num_gpus
        device_map[f'transformer.encoder.layers.{i}'] = gpu_target
        used += 1

    return device_map


def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
                       device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
    if num_gpus < 2 and device_map is None:
        model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
    else:
        from accelerate import dispatch_model

        model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()

        if device_map is None:
            device_map = auto_configure_device_map(num_gpus)

        model = dispatch_model(model, device_map=device_map)

    return model


class InvalidScoreLogitsProcessor(LogitsProcessor):
    def __call__(
        self, input_ids: torch.LongTensor, scores: torch.FloatTensor
    ) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 5] = 5e4
        return scores


def process_response(output, history):
    content = ""
    history = deepcopy(history)
    for response in output.split("<|assistant|>"):
        metadata, content = response.split("\n", maxsplit=1)
        if not metadata.strip():
            content = content.strip()
            history.append(
                {

                    "role": "assistant",
                    "metadata": metadata,
                    "content": content
                }
            )
            content = content.replace("[[训练时间]]", "2023年")
        else:
            history.append(
                {
                    "role": "assistant",
                    "metadata": metadata,
                    "content": content
                }
            )
            if history[0]["role"] == "system" and "tools" in history[0]:
                content = "\n".join(content.split("\n")[1:-1])

                def tool_call(**kwargs):
                    return kwargs

                parameters = eval(content)
                content = {
                    "name": metadata.strip(),
                    "parameters": parameters
                }
            else:
                content = {
                    "name": metadata.strip(),
                    "content": content
                }
    return content, history


@torch.inference_mode()
def generate_stream_chatglm3(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
    messages = params["messages"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    max_new_tokens = int(params.get("max_tokens", 256))
    echo = params.get("echo", True)

    query, role = messages[-1].content, messages[-1].role
    history = [m.dict(exclude_none=True) for m in messages[:-1]]

    inputs = tokenizer.build_chat_input(query, history=history, role=role)
    inputs = inputs.to(model.device)
    input_echo_len = len(inputs["input_ids"][0])

    if input_echo_len >= model.config.seq_length:
        raise

    eos_token_id = [
        tokenizer.eos_token_id,
        tokenizer.get_command("<|user|>"),
        tokenizer.get_command("<|observation|>")
    ]

    gen_kwargs = {
        "max_length": max_new_tokens + input_echo_len,
        "do_sample": True if temperature > 1e-5 else False,
        "top_p": top_p,
        "repetition_penalty": repetition_penalty,
        "logits_processor": [InvalidScoreLogitsProcessor()],
    }
    if temperature > 1e-5:
        gen_kwargs["temperature"] = temperature

    history.append(
        {
            "role": role,
            "content": query
        }
    )

    total_len = 0
    for total_ids in model.stream_generate(**inputs, eos_token_id=eos_token_id, **gen_kwargs):
        total_ids = total_ids.tolist()[0]
        total_len = len(total_ids)
        if echo:
            output_ids = total_ids[:-1]
        else:
            output_ids = total_ids[input_echo_len:-1]

        response = tokenizer.decode(output_ids)
        if response and response[-1] != "�":
            yield {
                "text": response,
                "usage": {
                    "prompt_tokens": input_echo_len,
                    "completion_tokens": total_len - input_echo_len,
                    "total_tokens": total_len,
                },
                "finish_reason": None,
            }

    # Only last stream result contains finish_reason, we set finish_reason as stop
    ret = {
        "text": response,
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": total_len - input_echo_len,
            "total_tokens": total_len,
        },
        "finish_reason": "stop",
    }
    yield ret

    gc.collect()
    torch.cuda.empty_cache()


def generate_chatglm3(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
    for response in generate_stream_chatglm3(model, tokenizer, params):
        pass
    return response