ChatGLM3 / openai_api.py
kakuguo's picture
Upload 52 files
afd4069
# coding=utf-8
# Implements API for ChatGLM3-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
# Usage: python openai_api.py
# Visit http://localhost:8000/docs for documents.
import json
import time
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union
import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from transformers import AutoTokenizer, AutoModel
from utils import process_response, generate_chatglm3, generate_stream_chatglm3
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system", "observation"]
content: str = None
metadata: Optional[str] = None
tools: Optional[List[dict]] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
stream: Optional[bool] = False
# Additional parameters support for stop generation
stop_token_ids: Optional[List[int]] = None
repetition_penalty: Optional[float] = 1.1
# Additional parameters supported by tools
return_function_call: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length", "function_call"]
history: Optional[List[dict]] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]]
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
if request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
with_function_call = bool(request.messages[0].role == "system" and request.messages[0].tools is not None)
# stop settings
request.stop = request.stop or []
if isinstance(request.stop, str):
request.stop = [request.stop]
request.stop_token_ids = request.stop_token_ids or []
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
stop_token_ids=request.stop_token_ids,
stop=request.stop,
repetition_penalty=request.repetition_penalty,
with_function_call=with_function_call,
)
if request.stream:
generate = predict(request.model, gen_params)
return EventSourceResponse(generate, media_type="text/event-stream")
response = generate_chatglm3(model, tokenizer, gen_params)
usage = UsageInfo()
finish_reason, history = "stop", None
if with_function_call and request.return_function_call:
history = [m.dict(exclude_none=True) for m in request.messages]
content, history = process_response(response["text"], history)
if isinstance(content, dict):
message, finish_reason = ChatMessage(
role="assistant",
content=json.dumps(content, ensure_ascii=False),
), "function_call"
else:
message = ChatMessage(role="assistant", content=content)
else:
message = ChatMessage(role="assistant", content=response["text"])
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
finish_reason=finish_reason,
history=history
)
task_usage = UsageInfo.parse_obj(response["usage"])
for usage_key, usage_value in task_usage.dict().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)
async def predict(model_id: str, params: dict):
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
previous_text = ""
for new_response in generate_stream_chatglm3(model, tokenizer, params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text):]
previous_text = decoded_unicode
if len(delta_text) == 0:
delta_text = None
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=delta_text),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
yield '[DONE]'
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("D:\git\model\chatglm3-6b-32k", trust_remote_code=True)
model = AutoModel.from_pretrained("D:\git\model\chatglm3-6b-32k", trust_remote_code=True).cuda()
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
# from utils import load_model_on_gpus
# model = load_model_on_gpus("THUDM/chatglm3-6b", num_gpus=2)
model = model.eval()
uvicorn.run(app, host='0.0.0.0', port=8080, workers=1)