Spaces:
Sleeping
Sleeping
File size: 21,243 Bytes
fbe9f3b 670a773 fbe9f3b 670a773 fbe9f3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
"""
utils for Hengam inference
"""
"""### Import Libraries"""
# import primitive libraries
import os
import pandas as pd
from tqdm import tqdm
import numpy as np
import json
# import seqval to report classifier performance metrics
from seqeval.metrics import accuracy_score, precision_score, recall_score, f1_score
from seqeval.scheme import IOB2
# import torch related modules
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import torch.nn as nn
# import pytorch lightning library
import pytorch_lightning as pl
from torchcrf import CRF as SUPERCRF
# import NLTK to create better tokenizer
import nltk
from nltk.tokenize import RegexpTokenizer
# Transformers : Roberta Model
from transformers import XLMRobertaTokenizerFast
from transformers import XLMRobertaModel, XLMRobertaConfig
# import Typings
from typing import Union, Dict, List, Tuple, Any, Optional
import glob
# for sent tokenizer (nltk)
nltk.download('punkt')
"""## XLM-Roberta
### TokenFromSubtoken
- Code adapted from the following [file](https://github.com/deepmipt/DeepPavlov/blob/master/deeppavlov/models/torch_bert/torch_transformers_sequence_tagger.py)
- DeepPavlov is an popular open source library for deep learning end-to-end dialog systems and chatbots.
- Licensed under the Apache License, Version 2.0 (the "License");
"""
class TokenFromSubtoken(torch.nn.Module):
def forward(self, units: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
""" Assemble token level units from subtoken level units
Args:
units: torch.Tensor of shape [batch_size, SUBTOKEN_seq_length, n_features]
mask: mask of token beginnings. For example: for tokens
[[``[CLS]`` ``My``, ``capybara``, ``[SEP]``],
[``[CLS]`` ``Your``, ``aar``, ``##dvark``, ``is``, ``awesome``, ``[SEP]``]]
the mask will be
[[0, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0]]
Returns:
word_level_units: Units assembled from ones in the mask. For the
example above this units will correspond to the following
[[``My``, ``capybara``],
[``Your`, ``aar``, ``is``, ``awesome``,]]
the shape of this tensor will be [batch_size, TOKEN_seq_length, n_features]
"""
device = units.device
nf_int = units.size()[-1]
batch_size = units.size()[0]
# number of TOKENS in each sentence
token_seq_lengths = torch.sum(mask, 1).to(torch.int64)
# number of words
n_words = torch.sum(token_seq_lengths)
# max token seq len
max_token_seq_len = torch.max(token_seq_lengths)
idxs = torch.stack(torch.nonzero(mask, as_tuple=True), dim=1)
# padding is for computing change from one sample to another in the batch
sample_ids_in_batch = torch.nn.functional.pad(input=idxs[:, 0], pad=[1, 0])
a = (~torch.eq(sample_ids_in_batch[1:], sample_ids_in_batch[:-1])).to(torch.int64)
# transforming sample start masks to the sample starts themselves
q = a * torch.arange(n_words, device=device).to(torch.int64)
count_to_substract = torch.nn.functional.pad(torch.masked_select(q, q.to(torch.bool)), [1, 0])
new_word_indices = torch.arange(n_words, device=device).to(torch.int64) - count_to_substract[torch.cumsum(a, 0)]
n_total_word_elements = max_token_seq_len*torch.ones_like(token_seq_lengths, device=device).sum()
word_indices_flat = (idxs[:, 0] * max_token_seq_len + new_word_indices).to(torch.int64)
#x_mask = torch.sum(torch.nn.functional.one_hot(word_indices_flat, n_total_word_elements), 0)
#x_mask = x_mask.to(torch.bool)
x_mask = torch.zeros(n_total_word_elements, dtype=torch.bool, device=device)
x_mask[word_indices_flat] = torch.ones_like(word_indices_flat, device=device, dtype=torch.bool)
# to get absolute indices we add max_token_seq_len:
# idxs[:, 0] * max_token_seq_len -> [0, 0, 0, 1, 1, 2] * 2 = [0, 0, 0, 3, 3, 6]
# word_indices_flat -> [0, 0, 0, 3, 3, 6] + [0, 1, 2, 0, 1, 0] = [0, 1, 2, 3, 4, 6]
# total number of words in the batch (including paddings)
# batch_size * max_token_seq_len -> 3 * 3 = 9
# tf.one_hot(...) ->
# [[1. 0. 0. 0. 0. 0. 0. 0. 0.]
# [0. 1. 0. 0. 0. 0. 0. 0. 0.]
# [0. 0. 1. 0. 0. 0. 0. 0. 0.]
# [0. 0. 0. 1. 0. 0. 0. 0. 0.]
# [0. 0. 0. 0. 1. 0. 0. 0. 0.]
# [0. 0. 0. 0. 0. 0. 1. 0. 0.]]
# x_mask -> [1, 1, 1, 1, 1, 0, 1, 0, 0]
nonword_indices_flat = (~x_mask).nonzero().squeeze(-1)
# get a sequence of units corresponding to the start subtokens of the words
# size: [n_words, n_features]
elements = units[mask.bool()]
# prepare zeros for paddings
# size: [batch_size * TOKEN_seq_length - n_words, n_features]
paddings = torch.zeros_like(nonword_indices_flat, dtype=elements.dtype).unsqueeze(-1).repeat(1,nf_int).to(device)
# tensor_flat -> [x, x, x, x, x, 0, x, 0, 0]
tensor_flat_unordered = torch.cat([elements, paddings])
_, order_idx = torch.sort(torch.cat([word_indices_flat, nonword_indices_flat]))
tensor_flat = tensor_flat_unordered[order_idx]
tensor = torch.reshape(tensor_flat, (-1, max_token_seq_len, nf_int))
# tensor -> [[x, x, x],
# [x, x, 0],
# [x, 0, 0]]
return tensor
"""### Conditional Random Field
- Code adopted form [torchcrf library](https://pytorch-crf.readthedocs.io/en/stable/)
- we override veiterbi decoder in order to make it compatible with our code
"""
class CRF(SUPERCRF):
# override veiterbi decoder in order to make it compatible with our code
def _viterbi_decode(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor) -> List[List[int]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and mask.dim() == 2
assert emissions.shape[:2] == mask.shape
assert emissions.size(2) == self.num_tags
assert mask[0].all()
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history = []
# score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# history saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
# Broadcast viterbi score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emission = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the score of the best
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
# Find the maximum score over all possible current tag
# shape: (batch_size, num_tags)
next_score, indices = next_score.max(dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
history.append(indices)
history = torch.stack(history, dim=0)
# End transition score
# shape: (batch_size, num_tags)
score += self.end_transitions
# Now, compute the best path for each sample
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
best_tags_list = []
for idx in range(batch_size):
# Find the tag which maximizes the score at the last timestep; this is our best tag
# for the last timestep
_, best_last_tag = score[idx].max(dim=0)
best_tags = [best_last_tag]
# We trace back where the best last tag comes from, append that to our best tag
# sequence, and trace it back again, and so on
for i, hist in enumerate(torch.flip(history[:seq_ends[idx]], dims=(0,))):
best_last_tag = hist[idx][best_tags[-1]]
best_tags.append(best_last_tag)
best_tags = torch.stack(best_tags, dim=0)
# Reverse the order because we start from the last timestep
best_tags_list.append(torch.flip(best_tags, dims=(0,)))
best_tags_list = nn.utils.rnn.pad_sequence(best_tags_list, batch_first=True, padding_value=0)
return best_tags_list
"""### CRFLayer
- Forward: decide output logits basaed on backbone network
- Decode: decode based on CRF weights
"""
class CRFLayer(nn.Module):
def __init__(self, embedding_size, n_labels):
super(CRFLayer, self).__init__()
self.dropout = nn.Dropout(0.1)
self.output_dense = nn.Linear(embedding_size,n_labels)
self.crf = CRF(n_labels, batch_first=True)
self.token_from_subtoken = TokenFromSubtoken()
# Forward: decide output logits basaed on backbone network
def forward(self, embedding, mask):
logits = self.output_dense(self.dropout(embedding))
logits = self.token_from_subtoken(logits, mask)
pad_mask = self.token_from_subtoken(mask.unsqueeze(-1), mask).squeeze(-1).bool()
return logits, pad_mask
# Decode: decode based on CRF weights
def decode(self, logits, pad_mask):
return self.crf.decode(logits, pad_mask)
# Evaluation Loss: calculate mean log likelihood of CRF layer
def eval_loss(self, logits, targets, pad_mask):
mean_log_likelihood = self.crf(logits, targets, pad_mask, reduction='sum').mean()
return -mean_log_likelihood
"""### NERModel
- Roberta Model with CRF Layer
"""
class NERModel(nn.Module):
def __init__(self, n_labels:int, roberta_path:str):
super(NERModel,self).__init__()
self.roberta = XLMRobertaModel.from_pretrained(roberta_path)
self.crf = CRFLayer(self.roberta.config.hidden_size, n_labels)
# Forward: pass embedings to CRF layer in order to evaluate logits from suboword sequence
def forward(self,
input_ids:torch.Tensor,
attention_mask:torch.Tensor,
token_type_ids:torch.Tensor,
mask:torch.Tensor) -> torch.Tensor:
embedding = self.roberta(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)[0]
logits, pad_mask = self.crf(embedding, mask)
return logits, pad_mask
# Disable Gradient and Predict with model
@torch.no_grad()
def predict(self, inputs:Tuple[torch.Tensor]) -> torch.Tensor:
input_ids, attention_mask, token_type_ids, mask = inputs
logits, pad_mask = self(input_ids, attention_mask, token_type_ids, mask)
decoded = self.crf.decode(logits, pad_mask)
return decoded, pad_mask
# Decode: pass to crf decoder and decode based on CRF weights
def decode(self, logits, pad_mask):
"""Decode logits using CRF weights
"""
return self.crf.decode(logits, pad_mask)
# Evaluation Loss: pass to crf eval_loss and calculate mean log likelihood of CRF layer
def eval_loss(self, logits, targets, pad_mask):
return self.crf.eval_loss(logits, targets, pad_mask)
# Determine number of layers to be fine-tuned (!freeze)
def freeze_roberta(self, n_freeze:int=6):
for param in self.roberta.parameters():
param.requires_grad = False
for param in self.roberta.encoder.layer[n_freeze:].parameters():
param.requires_grad = True
"""### NERTokenizer
- NLTK tokenizer along with XLMRobertaTokenizerFast tokenizer
- Code adapted from the following [file](https://github.com/ugurcanozalp/multilingual-ner/blob/main/multiner/utils/custom_tokenizer.py)
"""
class NERTokenizer(object):
MAX_LEN=512
BATCH_LENGTH_LIMT = 380 # Max number of roberta tokens in one sentence.
# Modified version of http://stackoverflow.com/questions/36353125/nltk-regular-expression-tokenizer
PATTERN = r'''(?x) # set flag to allow verbose regexps
(?:[A-Z]\.)+ # abbreviations, e.g. U.S.A. or U.S.A #
| (?:\d+\.) # numbers
| \w+(?:[-.]\w+)* # words with optional internal hyphens
| \$?\d+(?:.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis, and special chars below, includes ], [
| [-\]\[.؟،؛;"'?,():_`“”/°º‘’″…#$%()*+<>=@\\^_{}|~❑&§\!]
| \u200c
'''
def __init__(self, base_model:str, to_device:str='cpu'):
super(NERTokenizer,self).__init__()
self.roberta_tokenizer = XLMRobertaTokenizerFast.from_pretrained(base_model, do_lower_case=False, padding=True, truncation=True)
self.to_device = to_device
self.word_tokenizer = RegexpTokenizer(self.PATTERN)
self.sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
# tokenize batch of tokens
def tokenize_batch(self, inputs, pad_to = None) -> torch.Tensor:
batch = [inputs] if isinstance(inputs[0], str) else inputs
input_ids, attention_mask, token_type_ids, mask = [], [], [], []
for tokens in batch:
input_ids_tmp, attention_mask_tmp, token_type_ids_tmp, mask_tmp = self._tokenize_words(tokens)
input_ids.append(input_ids_tmp)
attention_mask.append(attention_mask_tmp)
token_type_ids.append(token_type_ids_tmp)
mask.append(mask_tmp)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.roberta_tokenizer.pad_token_id)
attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=0)
mask = pad_sequence(mask, batch_first=True, padding_value=0)
# truncate MAX_LEN
if input_ids.shape[-1]>self.MAX_LEN:
input_ids = input_ids[:,:,:self.MAX_LEN]
attention_mask = attention_mask[:,:,:self.MAX_LEN]
token_type_ids = token_type_ids[:,:,:self.MAX_LEN]
mask = mask[:,:,:self.MAX_LEN]
# extend pad
elif pad_to is not None and pad_to>input_ids.shape[1]:
bs = input_ids.shape[0]
padlen = pad_to-input_ids.shape[1]
input_ids_append = torch.tensor([self.roberta_tokenizer.pad_token_id], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
input_ids = torch.cat([input_ids, input_ids_append], dim=-1)
attention_mask_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
attention_mask = torch.cat([attention_mask, attention_mask_append], dim=-1)
token_type_ids_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
token_type_ids = torch.cat([token_type_ids, token_type_ids_append], dim=-1)
mask_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
mask = torch.cat([mask, mask_append], dim=-1)
# truncate pad
elif pad_to is not None and pad_to<input_ids.shape[1]:
input_ids = input_ids[:,:,:pad_to]
attention_mask = attention_mask[:,:,:pad_to]
token_type_ids = token_type_ids[:,:,:pad_to]
mask = mask[:,:,:pad_to]
if isinstance(inputs[0], str):
return input_ids[0], attention_mask[0], token_type_ids[0], mask[0]
else:
return input_ids, attention_mask, token_type_ids, mask
# tokenize list of words with roberta tokenizer
def _tokenize_words(self, words):
roberta_tokens = []
mask = []
for word in words:
subtokens = self.roberta_tokenizer.tokenize(word)
roberta_tokens+=subtokens
n_subtoken = len(subtokens)
if n_subtoken>=1:
mask = mask + [1] + [0]*(n_subtoken-1)
# add special tokens [CLS] and [SeP]
roberta_tokens = [self.roberta_tokenizer.cls_token] + roberta_tokens + [self.roberta_tokenizer.sep_token]
mask = [0] + mask + [0]
input_ids = torch.tensor(self.roberta_tokenizer.convert_tokens_to_ids(roberta_tokens), dtype=torch.long).to(self.to_device)
attention_mask = torch.ones(len(mask), dtype=torch.long).to(self.to_device)
token_type_ids = torch.zeros(len(mask), dtype=torch.long).to(self.to_device)
mask = torch.tensor(mask, dtype=torch.long).to(self.to_device)
return input_ids, attention_mask, token_type_ids, mask
# sent_to_token: yield each sentence token with positional span using nltk
def sent_to_token(self, raw_text):
for offset, ending in self.sent_tokenizer.span_tokenize(raw_text):
sub_text = raw_text[offset:ending]
words, spans = [], []
flush = False
total_subtoken = 0
for start, end in self.word_tokenizer.span_tokenize(sub_text):
flush = True
start += offset
end += offset
words.append(raw_text[start:end])
spans.append((start,end))
total_subtoken += len(self.roberta_tokenizer.tokenize(words[-1]))
if (total_subtoken > self.BATCH_LENGTH_LIMT):
# Print
yield words[:-1],spans[:-1]
spans = spans[len(spans)-1:]
words = words[len(words)-1:]
total_subtoken = sum([len(self.roberta_tokenizer.tokenize(word)) for word in words])
flush = False
if flush and len(spans) > 0:
yield words,spans
# Extract (batch words span() from a raw sentence
def prepare_row_text(self, raw_text, batch_size=16):
words_list, spans_list = [], []
end_batch = False
for words, spans in self.sent_to_token(raw_text):
end_batch = True
words_list.append(words)
spans_list.append(spans)
if len(spans_list) >= batch_size:
input_ids, attention_mask, token_type_ids, mask = self.tokenize_batch(words_list)
yield (input_ids, attention_mask, token_type_ids, mask), words_list, spans_list
words_list, spans_list = [], []
if end_batch and len(words_list) > 0:
input_ids, attention_mask, token_type_ids, mask = self.tokenize_batch(words_list)
yield (input_ids, attention_mask, token_type_ids, mask), words_list, spans_list
"""### NER
NER Interface : We Use this interface to infer sentence Time-Date tags.
"""
class NER(object):
def __init__(self, model_path, tags):
self.tags = tags
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Pre-Trained model
roberta_path = "xlm-roberta-base"
self.model = NERModel(n_labels=len(self.tags), roberta_path=roberta_path).to(self.device)
# Load Fine-Tuned model
state_dict = torch.load(model_path)
self.model.load_state_dict(state_dict, strict=False)
# Enable Evaluation mode
self.model.eval()
self.tokenizer = NERTokenizer(base_model=roberta_path, to_device=self.device)
# Predict and Pre/Post-Process the input/output
@torch.no_grad()
def __call__(self, raw_text):
outputs_flat, spans_flat, entities = [], [], []
for batch, words, spans in self.tokenizer.prepare_row_text(raw_text):
output, pad_mask = self.model.predict(batch)
outputs_flat.extend(output[pad_mask.bool()].reshape(-1).tolist())
spans_flat += sum(spans, [])
for tag_idx,(start,end) in zip(outputs_flat,spans_flat):
tag = self.tags[tag_idx]
# filter out O tags
if tag != 'O':
entities.append({'Text': raw_text[start:end],
'Tag': tag,
'Start':start,
'End': end})
return entities |