File size: 21,243 Bytes
fbe9f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670a773
fbe9f3b
 
 
 
 
 
 
670a773
fbe9f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
"""
utils for Hengam inference
"""

"""### Import Libraries"""

# import primitive libraries
import os
import pandas as pd
from tqdm import tqdm
import numpy as np
import json

# import seqval to report classifier performance metrics
from seqeval.metrics import accuracy_score, precision_score, recall_score, f1_score
from seqeval.scheme import IOB2

# import torch related modules
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import torch.nn as nn

# import pytorch lightning library
import pytorch_lightning as pl
from torchcrf import CRF as SUPERCRF

# import NLTK to create better tokenizer
import nltk
from nltk.tokenize import RegexpTokenizer

# Transformers : Roberta Model
from transformers import XLMRobertaTokenizerFast
from transformers import XLMRobertaModel, XLMRobertaConfig


# import Typings
from typing import Union, Dict, List, Tuple, Any, Optional

import glob

# for sent tokenizer (nltk)
nltk.download('punkt')


"""## XLM-Roberta
### TokenFromSubtoken
- Code adapted from the following [file](https://github.com/deepmipt/DeepPavlov/blob/master/deeppavlov/models/torch_bert/torch_transformers_sequence_tagger.py)
- DeepPavlov is an popular open source library for deep learning end-to-end dialog systems and chatbots.
- Licensed under the Apache License, Version 2.0 (the "License");
"""

class TokenFromSubtoken(torch.nn.Module):

    def forward(self, units: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        """ Assemble token level units from subtoken level units
        Args:
            units: torch.Tensor of shape [batch_size, SUBTOKEN_seq_length, n_features]
            mask: mask of token beginnings. For example: for tokens
                    [[``[CLS]`` ``My``, ``capybara``, ``[SEP]``],
                    [``[CLS]`` ``Your``, ``aar``, ``##dvark``, ``is``, ``awesome``, ``[SEP]``]]
                the mask will be
                    [[0, 1, 1, 0, 0, 0, 0],
                    [0, 1, 1, 0, 1, 1, 0]]
        Returns:
            word_level_units: Units assembled from ones in the mask. For the
                example above this units will correspond to the following
                    [[``My``, ``capybara``],
                    [``Your`, ``aar``, ``is``, ``awesome``,]]
                the shape of this tensor will be [batch_size, TOKEN_seq_length, n_features]
        """
        
        device = units.device
        nf_int = units.size()[-1]
        batch_size = units.size()[0]

        # number of TOKENS in each sentence
        token_seq_lengths = torch.sum(mask, 1).to(torch.int64)
        # number of words
        n_words = torch.sum(token_seq_lengths)
        # max token seq len
        max_token_seq_len = torch.max(token_seq_lengths)

        idxs = torch.stack(torch.nonzero(mask, as_tuple=True), dim=1)
        # padding is for computing change from one sample to another in the batch
        sample_ids_in_batch = torch.nn.functional.pad(input=idxs[:, 0], pad=[1, 0])
        
        a = (~torch.eq(sample_ids_in_batch[1:], sample_ids_in_batch[:-1])).to(torch.int64)
        
        # transforming sample start masks to the sample starts themselves
        q = a * torch.arange(n_words, device=device).to(torch.int64)
        count_to_substract = torch.nn.functional.pad(torch.masked_select(q, q.to(torch.bool)), [1, 0])

        new_word_indices = torch.arange(n_words, device=device).to(torch.int64) - count_to_substract[torch.cumsum(a, 0)]
        
        n_total_word_elements = max_token_seq_len*torch.ones_like(token_seq_lengths, device=device).sum()
        word_indices_flat = (idxs[:, 0] * max_token_seq_len + new_word_indices).to(torch.int64)
        #x_mask = torch.sum(torch.nn.functional.one_hot(word_indices_flat, n_total_word_elements), 0)
        #x_mask = x_mask.to(torch.bool)
        x_mask = torch.zeros(n_total_word_elements, dtype=torch.bool, device=device)
        x_mask[word_indices_flat] = torch.ones_like(word_indices_flat, device=device, dtype=torch.bool)
        # to get absolute indices we add max_token_seq_len:
        # idxs[:, 0] * max_token_seq_len -> [0, 0, 0, 1, 1, 2] * 2 = [0, 0, 0, 3, 3, 6]
        # word_indices_flat -> [0, 0, 0, 3, 3, 6] + [0, 1, 2, 0, 1, 0] = [0, 1, 2, 3, 4, 6]
        # total number of words in the batch (including paddings)
        # batch_size * max_token_seq_len -> 3 * 3 = 9
        # tf.one_hot(...) ->
        # [[1. 0. 0. 0. 0. 0. 0. 0. 0.]
        #  [0. 1. 0. 0. 0. 0. 0. 0. 0.]
        #  [0. 0. 1. 0. 0. 0. 0. 0. 0.]
        #  [0. 0. 0. 1. 0. 0. 0. 0. 0.]
        #  [0. 0. 0. 0. 1. 0. 0. 0. 0.]
        #  [0. 0. 0. 0. 0. 0. 1. 0. 0.]]
        #  x_mask -> [1, 1, 1, 1, 1, 0, 1, 0, 0]
        nonword_indices_flat = (~x_mask).nonzero().squeeze(-1)

        # get a sequence of units corresponding to the start subtokens of the words
        # size: [n_words, n_features]
        
        elements = units[mask.bool()]

        # prepare zeros for paddings
        # size: [batch_size * TOKEN_seq_length - n_words, n_features]
        paddings = torch.zeros_like(nonword_indices_flat, dtype=elements.dtype).unsqueeze(-1).repeat(1,nf_int).to(device)

        # tensor_flat -> [x, x, x, x, x, 0, x, 0, 0]
        tensor_flat_unordered = torch.cat([elements, paddings])
        _, order_idx = torch.sort(torch.cat([word_indices_flat, nonword_indices_flat]))
        tensor_flat = tensor_flat_unordered[order_idx]

        tensor = torch.reshape(tensor_flat, (-1, max_token_seq_len, nf_int))
        # tensor -> [[x, x, x],
        #            [x, x, 0],
        #            [x, 0, 0]]

        return tensor

"""### Conditional Random Field 
- Code adopted form [torchcrf library](https://pytorch-crf.readthedocs.io/en/stable/)
- we override veiterbi decoder in order to make it compatible with our code 
"""

class CRF(SUPERCRF):

    # override veiterbi decoder in order to make it compatible with our code 
    def _viterbi_decode(self, emissions: torch.FloatTensor,
                        mask: torch.ByteTensor) -> List[List[int]]:
        # emissions: (seq_length, batch_size, num_tags)
        # mask: (seq_length, batch_size)
        assert emissions.dim() == 3 and mask.dim() == 2
        assert emissions.shape[:2] == mask.shape
        assert emissions.size(2) == self.num_tags
        assert mask[0].all()

        seq_length, batch_size = mask.shape

        # Start transition and first emission
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[0]
        history = []

        # score is a tensor of size (batch_size, num_tags) where for every batch,
        # value at column j stores the score of the best tag sequence so far that ends
        # with tag j
        # history saves where the best tags candidate transitioned from; this is used
        # when we trace back the best tag sequence

        # Viterbi algorithm recursive case: we compute the score of the best tag sequence
        # for every possible next tag
        for i in range(1, seq_length):
            # Broadcast viterbi score for every possible next tag
            # shape: (batch_size, num_tags, 1)
            broadcast_score = score.unsqueeze(2)

            # Broadcast emission score for every possible current tag
            # shape: (batch_size, 1, num_tags)
            broadcast_emission = emissions[i].unsqueeze(1)

            # Compute the score tensor of size (batch_size, num_tags, num_tags) where
            # for each sample, entry at row i and column j stores the score of the best
            # tag sequence so far that ends with transitioning from tag i to tag j and emitting
            # shape: (batch_size, num_tags, num_tags)
            next_score = broadcast_score + self.transitions + broadcast_emission

            # Find the maximum score over all possible current tag
            # shape: (batch_size, num_tags)
            next_score, indices = next_score.max(dim=1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # and save the index that produces the next score
            # shape: (batch_size, num_tags)
            score = torch.where(mask[i].unsqueeze(1), next_score, score)
            history.append(indices)

        history = torch.stack(history, dim=0)

        # End transition score
        # shape: (batch_size, num_tags)
        score += self.end_transitions

        # Now, compute the best path for each sample

        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=0) - 1
        best_tags_list = []

        for idx in range(batch_size):
            # Find the tag which maximizes the score at the last timestep; this is our best tag
            # for the last timestep
            _, best_last_tag = score[idx].max(dim=0)
            best_tags = [best_last_tag]

            # We trace back where the best last tag comes from, append that to our best tag
            # sequence, and trace it back again, and so on
            for i, hist in enumerate(torch.flip(history[:seq_ends[idx]], dims=(0,))):
                best_last_tag = hist[idx][best_tags[-1]]
                best_tags.append(best_last_tag)

            best_tags = torch.stack(best_tags, dim=0)

            # Reverse the order because we start from the last timestep
            best_tags_list.append(torch.flip(best_tags, dims=(0,)))

        best_tags_list = nn.utils.rnn.pad_sequence(best_tags_list, batch_first=True, padding_value=0)

        return best_tags_list

"""### CRFLayer 
- Forward: decide output logits basaed on backbone network  
- Decode: decode based on CRF weights
"""

class CRFLayer(nn.Module):
    def __init__(self, embedding_size, n_labels):

        super(CRFLayer, self).__init__()
        self.dropout = nn.Dropout(0.1)
        self.output_dense = nn.Linear(embedding_size,n_labels)
        self.crf = CRF(n_labels, batch_first=True)
        self.token_from_subtoken = TokenFromSubtoken()

    # Forward: decide output logits basaed on backbone network  
    def forward(self, embedding, mask):
        logits = self.output_dense(self.dropout(embedding))
        logits = self.token_from_subtoken(logits, mask)
        pad_mask = self.token_from_subtoken(mask.unsqueeze(-1), mask).squeeze(-1).bool()
        return logits, pad_mask

    # Decode: decode based on CRF weights 
    def decode(self, logits, pad_mask):
        return self.crf.decode(logits, pad_mask)

    # Evaluation Loss: calculate mean log likelihood of CRF layer
    def eval_loss(self, logits, targets, pad_mask):
        mean_log_likelihood = self.crf(logits, targets, pad_mask, reduction='sum').mean()
        return -mean_log_likelihood

"""### NERModel
- Roberta Model with CRF Layer
"""

class NERModel(nn.Module):

    def __init__(self, n_labels:int, roberta_path:str):
        super(NERModel,self).__init__()
        self.roberta = XLMRobertaModel.from_pretrained(roberta_path)
        self.crf = CRFLayer(self.roberta.config.hidden_size, n_labels)

    # Forward: pass embedings to CRF layer in order to evaluate logits from suboword sequence
    def forward(self, 
                input_ids:torch.Tensor,
                attention_mask:torch.Tensor,
                token_type_ids:torch.Tensor,
                mask:torch.Tensor) -> torch.Tensor:

        embedding = self.roberta(input_ids=input_ids,
                                 attention_mask=attention_mask,
                                 token_type_ids=token_type_ids)[0]
        logits, pad_mask = self.crf(embedding, mask)
        return logits, pad_mask

    # Disable Gradient and Predict with model
    @torch.no_grad()
    def predict(self, inputs:Tuple[torch.Tensor]) -> torch.Tensor:
        input_ids, attention_mask, token_type_ids, mask = inputs
        logits, pad_mask = self(input_ids, attention_mask, token_type_ids, mask)
        decoded = self.crf.decode(logits, pad_mask)
        return decoded, pad_mask

    # Decode: pass to crf decoder and decode based on CRF weights 
    def decode(self, logits, pad_mask):
        """Decode logits using CRF weights 
        """
        return self.crf.decode(logits, pad_mask) 

    # Evaluation Loss: pass to crf eval_loss and calculate mean log likelihood of CRF layer
    def eval_loss(self, logits, targets, pad_mask):
        return self.crf.eval_loss(logits, targets, pad_mask)

    # Determine number of layers to be fine-tuned (!freeze) 
    def freeze_roberta(self, n_freeze:int=6):
        for param in self.roberta.parameters():
            param.requires_grad = False

        for param in self.roberta.encoder.layer[n_freeze:].parameters():
            param.requires_grad = True

"""### NERTokenizer
- NLTK tokenizer along with XLMRobertaTokenizerFast tokenizer
- Code adapted from the following [file](https://github.com/ugurcanozalp/multilingual-ner/blob/main/multiner/utils/custom_tokenizer.py)
"""

class NERTokenizer(object):

    MAX_LEN=512
    BATCH_LENGTH_LIMT = 380 # Max number of roberta tokens in one sentence.

    # Modified version of http://stackoverflow.com/questions/36353125/nltk-regular-expression-tokenizer
    PATTERN = r'''(?x)          # set flag to allow verbose regexps
        (?:[A-Z]\.)+        # abbreviations, e.g. U.S.A. or U.S.A # 
        | (?:\d+\.)           # numbers
        | \w+(?:[-.]\w+)*     # words with optional internal hyphens
        | \$?\d+(?:.\d+)?%?   # currency and percentages, e.g. $12.40, 82%
        | \.\.\.              # ellipsis, and special chars below, includes ], [
        | [-\]\[.؟،؛;"'?,():_`“”/°º‘’″…#$%()*+<>=@\\^_{}|~❑&§\!]
        | \u200c
    '''

    def __init__(self, base_model:str, to_device:str='cpu'):
        super(NERTokenizer,self).__init__()
        self.roberta_tokenizer = XLMRobertaTokenizerFast.from_pretrained(base_model, do_lower_case=False, padding=True, truncation=True)
        self.to_device = to_device

        self.word_tokenizer = RegexpTokenizer(self.PATTERN)
        self.sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')

    # tokenize batch of tokens
    def tokenize_batch(self, inputs, pad_to = None) -> torch.Tensor:
        batch = [inputs] if isinstance(inputs[0], str) else inputs
        
        input_ids, attention_mask, token_type_ids, mask = [], [], [], []
        for tokens in batch:
            input_ids_tmp, attention_mask_tmp, token_type_ids_tmp, mask_tmp = self._tokenize_words(tokens)
            input_ids.append(input_ids_tmp)
            attention_mask.append(attention_mask_tmp)
            token_type_ids.append(token_type_ids_tmp)
            mask.append(mask_tmp)

        input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.roberta_tokenizer.pad_token_id)
        attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
        token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=0)
        mask = pad_sequence(mask, batch_first=True, padding_value=0)
        # truncate MAX_LEN
        if input_ids.shape[-1]>self.MAX_LEN:
            input_ids = input_ids[:,:,:self.MAX_LEN]
            attention_mask = attention_mask[:,:,:self.MAX_LEN]
            token_type_ids = token_type_ids[:,:,:self.MAX_LEN]
            mask = mask[:,:,:self.MAX_LEN]
        
        # extend pad 
        elif pad_to is not None and pad_to>input_ids.shape[1]:
            bs = input_ids.shape[0]
            padlen = pad_to-input_ids.shape[1]

            input_ids_append = torch.tensor([self.roberta_tokenizer.pad_token_id], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
            input_ids = torch.cat([input_ids, input_ids_append], dim=-1)

            attention_mask_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
            attention_mask = torch.cat([attention_mask, attention_mask_append], dim=-1)

            token_type_ids_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
            token_type_ids = torch.cat([token_type_ids, token_type_ids_append], dim=-1)

            mask_append = torch.tensor([0], dtype=torch.long).repeat([bs, padlen]).to(self.to_device)
            mask = torch.cat([mask, mask_append], dim=-1)

        # truncate pad
        elif pad_to is not None and pad_to<input_ids.shape[1]:
            input_ids = input_ids[:,:,:pad_to]
            attention_mask = attention_mask[:,:,:pad_to]
            token_type_ids = token_type_ids[:,:,:pad_to]
            mask = mask[:,:,:pad_to]

        if isinstance(inputs[0], str):
            return input_ids[0], attention_mask[0], token_type_ids[0], mask[0]
        else:
            return input_ids, attention_mask, token_type_ids, mask

    # tokenize list of words with roberta tokenizer
    def _tokenize_words(self, words):
        roberta_tokens = []
        mask = []
        for word in words:
            subtokens = self.roberta_tokenizer.tokenize(word)
            roberta_tokens+=subtokens
            n_subtoken = len(subtokens)
            if n_subtoken>=1:
                mask = mask + [1] + [0]*(n_subtoken-1)

        # add special tokens [CLS] and [SeP]
        roberta_tokens = [self.roberta_tokenizer.cls_token] + roberta_tokens + [self.roberta_tokenizer.sep_token]
        mask = [0] + mask + [0]
        input_ids = torch.tensor(self.roberta_tokenizer.convert_tokens_to_ids(roberta_tokens), dtype=torch.long).to(self.to_device)
        attention_mask = torch.ones(len(mask), dtype=torch.long).to(self.to_device)
        token_type_ids = torch.zeros(len(mask), dtype=torch.long).to(self.to_device)
        mask = torch.tensor(mask, dtype=torch.long).to(self.to_device)
        return input_ids, attention_mask, token_type_ids, mask

    # sent_to_token: yield each sentence token with positional span using nltk
    def sent_to_token(self, raw_text):
        for offset, ending in self.sent_tokenizer.span_tokenize(raw_text):
            sub_text = raw_text[offset:ending]
            words, spans = [], []
            flush = False
            total_subtoken = 0
            for start, end in self.word_tokenizer.span_tokenize(sub_text):
                flush = True
                start += offset
                end += offset
                words.append(raw_text[start:end])
                spans.append((start,end))
                total_subtoken += len(self.roberta_tokenizer.tokenize(words[-1]))
                if (total_subtoken > self.BATCH_LENGTH_LIMT): 
                    # Print
                    yield words[:-1],spans[:-1]
                    spans = spans[len(spans)-1:]
                    words = words[len(words)-1:]
                    total_subtoken = sum([len(self.roberta_tokenizer.tokenize(word)) for word in words])
                    flush = False

            if flush and len(spans) > 0:
                yield words,spans

    # Extract (batch words span() from a raw sentence
    def prepare_row_text(self, raw_text, batch_size=16):
        words_list, spans_list = [], []
        end_batch = False
        for words, spans in self.sent_to_token(raw_text):
            end_batch = True
            words_list.append(words)
            spans_list.append(spans)
            if len(spans_list) >= batch_size:
                input_ids, attention_mask, token_type_ids, mask = self.tokenize_batch(words_list)
                yield (input_ids, attention_mask, token_type_ids, mask), words_list, spans_list
                words_list, spans_list = [], []
        if end_batch and len(words_list) > 0:
            input_ids, attention_mask, token_type_ids, mask = self.tokenize_batch(words_list)
            yield (input_ids, attention_mask, token_type_ids, mask), words_list, spans_list

"""### NER
NER Interface : We Use this interface to infer sentence Time-Date tags.
"""

class NER(object):

    def __init__(self, model_path, tags):
        
        self.tags = tags
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # Load Pre-Trained model
        roberta_path = "xlm-roberta-base"
        self.model = NERModel(n_labels=len(self.tags), roberta_path=roberta_path).to(self.device)
        # Load Fine-Tuned model
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict, strict=False)
        # Enable Evaluation mode
        self.model.eval()
        self.tokenizer = NERTokenizer(base_model=roberta_path, to_device=self.device)

    # Predict and Pre/Post-Process the input/output
    @torch.no_grad()
    def __call__(self, raw_text):

        outputs_flat, spans_flat, entities = [], [], []
        for batch, words, spans in self.tokenizer.prepare_row_text(raw_text):
            output, pad_mask = self.model.predict(batch)
            outputs_flat.extend(output[pad_mask.bool()].reshape(-1).tolist())
            spans_flat += sum(spans, [])

        for tag_idx,(start,end) in zip(outputs_flat,spans_flat):
            tag = self.tags[tag_idx]
            # filter out O tags
            if tag != 'O':
                entities.append({'Text': raw_text[start:end], 
                                 'Tag': tag, 
                                 'Start':start,
                                 'End': end})

        return entities