katospiegel commited on
Commit
e9cf21b
1 Parent(s): b1ed6da

Little function to deal with no scoring

Browse files
Files changed (2) hide show
  1. helpers.py +9 -1
  2. transcription.py +2 -2
helpers.py CHANGED
@@ -123,9 +123,17 @@ def crear_diccionario(json_data):
123
 
124
  # Iteramos sobre las palabras del segmento
125
  for palabra in palabras:
 
126
  # Obtenemos los valores de la palabra
127
  word = palabra['word']
128
- score = palabra['score']
 
 
 
 
 
 
 
129
 
130
  # Agregamos los valores al diccionario
131
  diccionario['start_time'].append(start_time)
 
123
 
124
  # Iteramos sobre las palabras del segmento
125
  for palabra in palabras:
126
+
127
  # Obtenemos los valores de la palabra
128
  word = palabra['word']
129
+ if 'score'not in palabra.keys():
130
+ print(segmento)
131
+ print(palabra)
132
+ # Agregamos el score por defecto
133
+ palabra['score'] = 0.5
134
+ else:
135
+ score = palabra['score']
136
+
137
 
138
  # Agregamos los valores al diccionario
139
  diccionario['start_time'].append(start_time)
transcription.py CHANGED
@@ -46,7 +46,7 @@ def doWhisperX(audio_file, whisper_model="large-v2", language="es"):
46
 
47
  audio = whisperx.load_audio(audio_file)
48
  result_whisper = model.transcribe(audio, language=language, batch_size=batch_size)
49
- print(result_whisper["segments"]) # before alignment
50
 
51
  # delete model if low on GPU resources
52
  # import gc; gc.collect(); torch.cuda.empty_cache(); del model
@@ -55,7 +55,7 @@ def doWhisperX(audio_file, whisper_model="large-v2", language="es"):
55
  model_a, metadata = whisperx.load_align_model(language_code=result_whisper["language"], device=device)
56
  result_aligned = whisperx.align(result_whisper["segments"], model_a, metadata, audio, device, return_char_alignments=False)
57
 
58
- print(result_aligned) # after alignment
59
 
60
  # delete model if low on GPU resources
61
  # import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
 
46
 
47
  audio = whisperx.load_audio(audio_file)
48
  result_whisper = model.transcribe(audio, language=language, batch_size=batch_size)
49
+ #print(result_whisper["segments"]) # before alignment
50
 
51
  # delete model if low on GPU resources
52
  # import gc; gc.collect(); torch.cuda.empty_cache(); del model
 
55
  model_a, metadata = whisperx.load_align_model(language_code=result_whisper["language"], device=device)
56
  result_aligned = whisperx.align(result_whisper["segments"], model_a, metadata, audio, device, return_char_alignments=False)
57
 
58
+ #print(result_aligned) # after alignment
59
 
60
  # delete model if low on GPU resources
61
  # import gc; gc.collect(); torch.cuda.empty_cache(); del model_a