Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
base_model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=6)
|
9 |
+
model = PeftModel.from_pretrained(base_model, "katsuchi/bert-dair-ai-emotion")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
11 |
+
|
12 |
+
def predict_emotion(text):
|
13 |
+
# Tokenize input
|
14 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
15 |
+
|
16 |
+
# Get model prediction
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(tokens['input_ids'])
|
19 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
20 |
+
|
21 |
+
# Convert probabilities to percentages
|
22 |
+
percentages = (probs * 100).squeeze().tolist()
|
23 |
+
|
24 |
+
# Create emotion-percentage mapping
|
25 |
+
emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
|
26 |
+
emotion_probs = {
|
27 |
+
emotion: f"{percentage:.1f}%"
|
28 |
+
for emotion, percentage in zip(emotions, percentages)
|
29 |
+
}
|
30 |
+
|
31 |
+
# Sort by probability in descending order
|
32 |
+
sorted_emotions = dict(
|
33 |
+
sorted(emotion_probs.items(),
|
34 |
+
key=lambda x: float(x[1].rstrip('%')),
|
35 |
+
reverse=True)
|
36 |
+
)
|
37 |
+
|
38 |
+
# Format output
|
39 |
+
return json.dumps(sorted_emotions, indent=2)
|
40 |
+
|
41 |
+
# Create Gradio interface
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=predict_emotion,
|
44 |
+
inputs=gr.Textbox(
|
45 |
+
lines=3,
|
46 |
+
placeholder="Enter text here..."
|
47 |
+
),
|
48 |
+
outputs=gr.JSON(),
|
49 |
+
title="Emotion Classifier",
|
50 |
+
description="Predict emotions in text with confidence percentages",
|
51 |
+
examples=[
|
52 |
+
["I am so happy to see you!"],
|
53 |
+
["I'm really disappointed with the results."],
|
54 |
+
["That's absolutely terrifying!"],
|
55 |
+
["I love spending time with my family."]
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
iface.launch()
|