File size: 22,024 Bytes
699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
import os
from typing import (Any, List, Dict, Optional, Tuple,
Union, Callable, Iterable, Iterator)
import pandas as pd
from PIL import Image
import datetime
from argparse import ArgumentParser
from enum import Enum
import numpy as np
from numpy.random import RandomState
import collections.abc
from collections import Counter, defaultdict
import math
import torch
import torch.nn as nn
import torch.utils.data as data
from torch.utils.data import DataLoader
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
RandomRotation,
RandomAffine,
Resize,
ToTensor)
from transformers import ViTImageProcessor
from transformers import ViTForImageClassification
from transformers import AdamW
from transformers import AutoImageProcessor, ResNetForImageClassification
import lightning as L
from lightning import Trainer
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.callbacks import ModelSummary
from torchmetrics.aggregation import MeanMetric
from torchmetrics.classification.accuracy import MulticlassAccuracy
from torchmetrics.classification import MulticlassCohenKappa
from labelmap import DR_LABELMAP
DataRecord = Tuple[Image.Image, int]
class RetinopathyDataset(data.Dataset[DataRecord]):
""" A class to access the pre-downloaded Diabetic Retinopathy dataset. """
def __init__(self, data_path: str) -> None:
""" Constructor.
Args:
data_path (str): path to the dataset, ex: "retinopathy_data"
containing "trainLabels.csv" and "train/".
"""
super().__init__()
self.data_path = data_path
self.ext = ".jpeg"
anno_path = os.path.join(data_path, "trainLabels.csv")
self.anno_df = pd.read_csv(anno_path) # ['image', 'level']
anno_name_set = set(self.anno_df['image'])
if True:
train_path = os.path.join(data_path, "train")
img_path_list = os.listdir(train_path)
img_name_set = set([os.path.splitext(p)[0] for p in img_path_list])
assert anno_name_set == img_name_set
self.label_map = DR_LABELMAP
def __getitem__(self, index: Union[int, slice]) -> DataRecord:
assert isinstance(index, int)
img_path = self.get_path_at(index)
img = Image.open(img_path)
label = self.get_label_at(index)
return img, label
def __len__(self) -> int:
return len(self.anno_df)
def get_label_at(self, index: int) -> int:
label = self.anno_df['level'].iloc[index].item()
return label
def get_path_at(self, index: int) -> str:
img_name = self.anno_df['image'].iloc[index]
img_path = os.path.join(self.data_path, "train", img_name+self.ext)
return img_path
""" Purpose of a split: training or validation. """
class Purpose(Enum):
Train = 0
Val = 1
""" Augmentation transformations for an image and a label. """
FeatureAndTargetTransforms = Tuple[Callable[..., torch.Tensor],
Callable[..., torch.Tensor]]
""" Feature (image) and target (label) tensors. """
TensorRecord = Tuple[torch.Tensor, torch.Tensor]
class Split(data.Dataset[TensorRecord], collections.abc.Sequence[TensorRecord]):
""" Split is a class that keep a view on a part of a dataset.
Split is used to hold the imormation about which samples go to training
and which to validation without a need to put these groups of files into
separate folders.
"""
def __init__(self, dataset: RetinopathyDataset,
indices: np.ndarray,
purpose: Purpose,
transforms: FeatureAndTargetTransforms,
oversample_factor: int = 1,
stratify_classes: bool = False,
use_log_frequencies: bool = False,
):
""" Constructor.
Args:
dataset (RetinopathyDataset): The dataset on which the Split "views".
indices (np.ndarray): Externally provided indices of samples that
are "viewed" on.
purpose (Purpose): Either train or val, to be able to replicate
the data for train split for effecient workers utilization.
transforms (FeatureAndTargetTransforms): Functors of feature and
target transforms.
oversample_factor (int, optional): Expand the training dataset by
replication to avoid dataloader stalls on epoch ends. Defaults to 1.
stratify_classes (bool, optional): Whether to apply stratified sampling.
Defaults to False.
use_log_frequencies (bool, optional): If stratify_classes=True,
whether to use logarithmic sampling strategy. If False, apply
regular even sampling. Defaults to False.
"""
self.dataset = dataset
self.indices = indices
self.purpose = purpose
self.feature_transform = transforms[0]
self.target_transform = transforms[1]
self.oversample_factor = oversample_factor
self.stratify_classes = stratify_classes
self.use_log_frequencies = use_log_frequencies
self.per_class_indices: Optional[Dict[int, np.ndarray]] = None
self.frequencies: Optional[Dict[int, float]] = None
if self.stratify_classes:
self._bucketize_indices()
if self.use_log_frequencies:
self._calc_frequencies()
def _calc_frequencies(self):
assert self.per_class_indices is not None
counts_dict = {lbl: len(arr) for lbl, arr in self.per_class_indices.items()}
counts = np.array(list(counts_dict.values()))
counts_nrm = self._normalize(counts)
temperature = 50.0 # > 1 to even-out frequencies
freqs = self._normalize(np.log1p(counts_nrm * temperature))
self.frequencies = {k: freq.item() for k, freq
in zip(self.per_class_indices.keys(), freqs)}
print(self.frequencies)
@staticmethod
def _normalize(arr: np.ndarray) -> np.ndarray:
return arr / np.sum(arr)
def _bucketize_indices(self):
buckets = defaultdict(list)
for index in self.indices:
label = self.dataset.get_label_at(index)
buckets[label].append(index)
self.per_class_indices = {k: np.array(v)
for k, v in buckets.items()}
def __getitem__(self, index: Union[int, slice]) -> TensorRecord: # type: ignore[override]
assert isinstance(index, int)
if self.purpose == Purpose.Train:
index_rem = index % len(self.indices)
idx = self.indices[index_rem].item()
else:
idx = self.indices[index].item()
if self.per_class_indices:
if self.frequencies is not None:
arange = np.arange(len(self.per_class_indices))
frequencies = np.zeros(len(self.per_class_indices), dtype=float)
for k, v in self.frequencies.items():
frequencies[k] = v
random_key = np.random.choice(
arange,
p=frequencies)
else:
random_key = np.random.randint(len(self.per_class_indices))
indices = self.per_class_indices[random_key]
actual_index = np.random.choice(indices).item()
else:
actual_index = idx
feature, target = self.dataset[actual_index]
feature_tensor = self.feature_transform(feature)
target_tensor = self.target_transform(target)
return feature_tensor, target_tensor
def __len__(self):
if self.purpose == Purpose.Train:
return len(self.indices) * self.oversample_factor
else:
return len(self.indices)
@staticmethod
def make_splits(all_data: RetinopathyDataset,
train_transforms: FeatureAndTargetTransforms,
val_transforms: FeatureAndTargetTransforms,
train_fraction: float,
stratify_train: bool,
stratify_val: bool,
seed: int = 54,
) -> Tuple['Split', 'Split']:
""" Prepare train and val splits deterministically.
Returns:
Tuple[Split, Split]:
- Train split
- Val split
"""
prng = RandomState(seed)
num_train = int(len(all_data) * train_fraction)
all_indices = prng.permutation(len(all_data))
train_indices = all_indices[:num_train]
val_indices = all_indices[num_train:]
train_data = Split(all_data, train_indices, Purpose.Train,
train_transforms, stratify_classes=stratify_train)
val_data = Split(all_data, val_indices, Purpose.Val,
val_transforms, stratify_classes=stratify_val)
return train_data, val_data
def print_data_stats(dataset: Union[Iterable[DataRecord], DataLoader],
split_name: str) -> None:
labels = []
for _, label in dataset:
if isinstance(label, torch.Tensor):
label = label.cpu().numpy()
labels.append(label)
labels = np.concatenate(labels)
cnt = Counter(labels)
print(cnt)
class Metrics:
def __init__(self,
num_classes: int,
labelmap: Dict[int, str],
split: str,
log_fn: Callable[..., None]) -> None:
self.labelmap = labelmap
self.loss = MeanMetric(nan_strategy='ignore')
self.accuracy = MulticlassAccuracy(num_classes=num_classes)
self.per_class_accuracies = MulticlassAccuracy(
num_classes=num_classes, average=None)
self.kappa = MulticlassCohenKappa(num_classes)
self.split = split
self.log_fn = log_fn
def update(self,
loss: torch.Tensor,
preds: torch.Tensor,
labels: torch.Tensor) -> None:
self.loss.update(loss)
self.accuracy.update(preds, labels)
self.per_class_accuracies.update(preds, labels)
self.kappa.update(preds, labels)
def log(self) -> None:
loss = self.loss.compute()
accuracy = self.accuracy.compute()
accuracies = self.per_class_accuracies.compute()
kappa = self.kappa.compute()
mean_accuracy = torch.nanmean(accuracies)
self.log_fn(f"{self.split}/loss", loss, sync_dist=True)
self.log_fn(f"{self.split}/accuracy", accuracy, sync_dist=True)
self.log_fn(f"{self.split}/mean_accuracy", mean_accuracy, sync_dist=True)
for i_class, acc in enumerate(accuracies):
name = self.labelmap[i_class]
self.log_fn(f"{self.split}/acc/{i_class} {name}", acc, sync_dist=True)
self.log_fn(f"{self.split}/kappa", kappa, sync_dist=True)
def to(self, device) -> 'Metrics':
self.loss.to(device) # BUG HERE? should I assign it back?
self.accuracy.to(device)
self.per_class_accuracies.to(device)
self.kappa.to(device)
return self
def worker_init_fn(worker_id: int) -> None:
""" Initialize workers in a way that they draw different
random samples and do not repeat identical pseudorandom
sequences of each other, which may be the case with Fork
multiprocessing.
Args:
worker_id (int): id of a preprocessing worker process launched
by one DDP training process.
"""
state = np.random.get_state()
assert isinstance(state, tuple)
assert isinstance(state[1], np.ndarray)
seed_arr = state[1]
seed_np = seed_arr[0] + worker_id
np.random.seed(seed_np)
seed_pt = seed_np + 1111
torch.manual_seed(seed_pt)
print(f"Setting numpy seed to {seed_np} and pytorch seed to {seed_pt} in worker {worker_id}")
class ViTLightningModule(L.LightningModule):
""" Lightning Module that implements neural network training hooks. """
def __init__(self, debug: bool) -> None:
super().__init__()
self.save_hyperparameters()
np.random.seed(53)
# pretrained_name = 'google/vit-base-patch16-224-in21k'
# pretrained_name = 'google/vit-base-patch16-384-in21k'
# pretrained_name = "microsoft/resnet-50"
pretrained_name = "microsoft/resnet-34"
# processor = ViTImageProcessor.from_pretrained(pretrained_name)
processor = AutoImageProcessor.from_pretrained(pretrained_name)
image_mean = processor.image_mean # type: ignore
image_std = processor.image_std # type: ignore
# size = processor.size["height"] # type: ignore
# size = processor.size["shortest_edge"] # type: ignore
size = 896 # 448
normalize = Normalize(mean=image_mean, std=image_std)
train_transforms = Compose(
[
# RandomRotation((-180, 180)),
RandomAffine((-180, 180), shear=10),
RandomResizedCrop(size, scale=(0.5, 1.0)),
RandomHorizontalFlip(),
ToTensor(),
normalize,
]
)
val_transforms = Compose(
[
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
]
)
self.dataset = RetinopathyDataset("retinopathy_data")
# print_data_stats(self.dataset, "all_data")
train_data, val_data = Split.make_splits(
self.dataset,
train_transforms=(train_transforms, torch.tensor),
val_transforms=(val_transforms, torch.tensor),
train_fraction=0.9,
stratify_train=True,
stratify_val=True,
)
assert len(set(train_data.indices).intersection(set(val_data.indices))) == 0
label2id = {label: id for id, label in self.dataset.label_map.items()}
num_classes = len(self.dataset.label_map)
labelmap = self.dataset.label_map
assert len(labelmap) == num_classes
assert set(labelmap.keys()) == set(range(num_classes))
train_batch_size = 4 if debug else 20
val_batch_size = 4 if debug else 20
num_gpus = torch.cuda.device_count()
print(f"{num_gpus=}")
num_cores = torch.get_num_threads()
print(f"{num_cores=}")
num_threads_per_gpu = max(1, int(math.ceil(num_cores / num_gpus))) \
if num_gpus > 0 else 1
num_workers = 1 if debug else num_threads_per_gpu
print(f"{num_workers=}")
self._train_dataloader = DataLoader(
train_data,
shuffle=True,
num_workers=num_workers,
persistent_workers=num_workers > 0,
pin_memory=True,
batch_size=train_batch_size,
worker_init_fn=worker_init_fn,
)
self._val_dataloader = DataLoader(
val_data,
shuffle=False,
num_workers=num_workers,
persistent_workers=num_workers > 0,
pin_memory=True,
batch_size=val_batch_size,
)
# print_data_stats(self._val_dataloader, "val")
# print_data_stats(self._train_dataloader, "train")
img_batch, label_batch = next(iter(self._train_dataloader))
assert isinstance(img_batch, torch.Tensor)
assert isinstance(label_batch, torch.Tensor)
print(f"{img_batch.shape=} {label_batch.shape=}")
assert img_batch.shape == (train_batch_size, 3, size, size)
assert label_batch.shape == (train_batch_size,)
self.example_input_array = torch.randn_like(img_batch)
# self._model = ViTForImageClassification.from_pretrained(
# pretrained_name,
# num_labels=len(self.dataset.label_map),
# id2label=self.dataset.label_map,
# label2id=label2id)
self._model = ResNetForImageClassification.from_pretrained(
pretrained_name,
num_labels=len(self.dataset.label_map),
id2label=self.dataset.label_map,
label2id=label2id,
ignore_mismatched_sizes=True)
assert isinstance(self._model, nn.Module)
self.train_metrics: Optional[Metrics] = None
self.val_metrics: Optional[Metrics] = None
@property
def num_classes(self):
return len(self.dataset.label_map)
@property
def labelmap(self):
return self.dataset.label_map
def forward(self, img_batch):
outputs = self._model(img_batch) # type: ignore
return outputs.logits
def common_step(self, batch, batch_idx):
img_batch, label_batch = batch
logits = self(img_batch)
criterion = nn.CrossEntropyLoss()
loss = criterion(logits, label_batch)
preds_batch = logits.argmax(-1)
return loss, preds_batch, label_batch
def on_train_epoch_start(self) -> None:
self.train_metrics = Metrics(
self.num_classes,
self.labelmap,
"train",
self.log).to(self.device)
def training_step(self, batch, batch_idx):
loss, preds, labels = self.common_step(batch, batch_idx)
assert self.train_metrics is not None
self.train_metrics.update(loss, preds, labels)
if False and batch_idx == 0:
self._dump_train_images()
return loss
def _dump_train_images(self) -> None:
""" Save augmented images to disk for inspection. """
img_batch, label_batch = next(iter(self._train_dataloader))
for i_img, (img, label) in enumerate(zip(img_batch, label_batch)):
img_np = img.cpu().numpy()
denorm_np = (img_np - img_np.min()) / (img_np.max() - img_np.min())
img_uint8 = (255 * denorm_np).astype(np.uint8)
pil_img = Image.fromarray(np.transpose(img_uint8, (1, 2, 0)))
if self.logger is not None and self.logger.log_dir is not None:
assert isinstance(self.logger.log_dir, str)
os.makedirs(self.logger.log_dir, exist_ok=True)
path = os.path.join(self.logger.log_dir,
f"img_{i_img:02d}_{label.item()}.png")
pil_img.save(path)
def on_train_epoch_end(self) -> None:
assert self.train_metrics is not None
self.train_metrics.log()
assert self.logger is not None
if self.logger.log_dir is not None:
path = os.path.join(self.logger.log_dir, "inference")
self.save_checkpoint_dk(path)
def save_checkpoint_dk(self, dirpath: str) -> None:
if self.global_rank == 0:
self._model.save_pretrained(dirpath)
def validation_step(self, batch, batch_idx):
loss, preds, labels = self.common_step(batch, batch_idx)
assert self.val_metrics is not None
self.val_metrics.update(loss, preds, labels)
return loss
def on_validation_epoch_start(self) -> None:
self.val_metrics = Metrics(
self.num_classes,
self.labelmap,
"val",
self.log).to(self.device)
def on_validation_epoch_end(self) -> None:
assert self.val_metrics is not None
self.val_metrics.log()
def configure_optimizers(self):
# No WD is the same as 1e-3 and better than 1e-2
# LR 1e-3 is worse than 1e-4 (without LR scheduler)
return AdamW(self.parameters(),
lr=1e-4,
)
def main():
""" Neural network trainer entry point. """
parser = ArgumentParser(description='KAUST-SDAIA Diabetic Retinopathy')
parser.add_argument('--tag', action='store', type=str,
help='Extra suffix to put on the artefact dir name')
parser.add_argument('--debug', action='store_true',
help="Dummy training cycle for testing purposes")
parser.add_argument('--convert-checkpoint', action='store', type=str,
help='Convert a checkpoint from training to pickle-independent '
'predictor-compatible directory')
args = parser.parse_args()
torch.set_float32_matmul_precision('high') # for V100/A100
if args.convert_checkpoint is not None:
print("Converting checkpoint", args.convert_checkpoint)
checkpoint = torch.load(args.convert_checkpoint, map_location="cpu")
print(list(checkpoint.keys()))
model = ViTLightningModule.load_from_checkpoint(
args.convert_checkpoint,
map_location="cpu",
hparams_file="tmp_ckpt_deleteme.yaml")
model.save_checkpoint_dk("tmp_checkp_path_deleteme")
print("Saved checkpoint. Done.")
else:
print("Start training")
fast_dev_run = True if args.debug == True else False
model = ViTLightningModule(fast_dev_run)
datetime_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
art_dir_name = (f"{datetime_str}" +
(f"_{args.tag}" if args.tag is not None else ""))
logger = TensorBoardLogger(save_dir=".", name="lightning_logs", version=art_dir_name)
trainer = Trainer(
logger=logger,
benchmark=True,
devices="auto",
accelerator="auto",
max_epochs=-1,
callbacks=[
ModelSummary(max_depth=-1),
],
fast_dev_run=fast_dev_run,
log_every_n_steps=10,
)
trainer.fit(
model,
train_dataloaders=model._train_dataloader,
val_dataloaders=model._val_dataloader,
)
print("Training done")
if __name__ == "__main__":
main()
|