File size: 5,480 Bytes
699342a f036ad4 699342a baca1f3 edee466 699342a f036ad4 699342a f036ad4 699342a edee466 699342a 6d2185b 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a f036ad4 699342a ff0a933 699342a f036ad4 edee466 699342a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import gradio as gr
import numpy as np
import torch
from typing import Tuple, Optional, Dict, List, Dict
import glob
from collections import defaultdict
from transformers import (AutoImageProcessor,
ResNetForImageClassification)
from src.labelmap import DR_LABELMAP
from src.fetch_files import fetch_files
class App:
""" Demonstration of the Diabetic Retinopathy model as a Gradio app. """
def __init__(self) -> None:
""" Constructor. """
ckpt_name = "2023-12-24_20-02-18_30345221_V100_x4_resnet34/"
path = f"release_ckpts/{ckpt_name}/inference/"
if not os.path.exists(path):
raise Exception(f"Checkpoint not found at {path}")
self.image_processor = AutoImageProcessor.from_pretrained(path)
self.model = ResNetForImageClassification.from_pretrained(path)
example_lists = self._load_example_lists()
device = 'GPU' if torch.cuda.is_available() else 'CPU'
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
with gr.Blocks(css=css) as ui:
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
predict_btn = gr.Button("Predict", size="lg")
with gr.Row():
gr.Markdown(f"Running on {device}")
with gr.Column(scale=4):
# output = gr.Textbox(label="Retinopathy level prediction")
output = gr.Label(num_top_classes=len(DR_LABELMAP),
label="Retinopathy level prediction")
with gr.Column(scale=4):
gr.Markdown("![](https://media.githubusercontent.com/media/SDAIA-KAUST-AI/diabetic-retinopathy-detection/main/media/logo1.png)")
with gr.Row():
with gr.Column(scale=9, min_width=100):
image = gr.Image(label="Retina scan")
with gr.Column(scale=1, min_width=150):
for cls_id in range(len(example_lists)):
label = DR_LABELMAP[cls_id]
with gr.Tab(f"{cls_id} : {label}"):
gr.Examples(
example_lists[cls_id],
inputs=[image],
outputs=[output],
fn=self.predict,
examples_per_page=10,
run_on_click=True)
predict_btn.click(
fn=self.predict,
inputs=image,
outputs=output,
api_name="predict")
self.ui = ui
def launch(self) -> None:
""" Launch the application, blocking. """
self.ui.queue().launch(share=True)
def predict(self, image: Optional[np.ndarray]) -> Dict[str, float]:
""" Gradio callback for pricessing of an image.
Args:
image (Optional[np.ndarray]): Provided image.
Returns:
Dict[str, float]: Label-compatible dict.
"""
if image is None:
return dict()
cls_name, prob, probs = self._infer(image)
message = f"Predicted class={cls_name}, prob={prob:.3f}"
print(message)
probs_dict = {f"{i} - {DR_LABELMAP[i]}": float(v)
for i, v in enumerate(probs)}
return probs_dict
def _infer(self, image_chw: np.ndarray) -> Tuple[str, float, np.ndarray]:
""" Low-level method to perform neural network inference.
Args:
image_chw (np.ndarray): Provided image.
Returns:
Tuple[str, float, np.ndarray]:
- Most probable class name
- Probability of the most probable class name.
- Probablilities of all classes in the order of
being listed in the label map.
"""
assert isinstance(self.model, ResNetForImageClassification)
inputs = self.image_processor(image_chw, return_tensors="pt")
with torch.no_grad():
output = self.model(**inputs)
logits_batch = output.logits
assert len(logits_batch.shape) == 2
assert logits_batch.shape[0] == 1
logits = logits_batch[0]
probs = torch.softmax(logits, dim=-1)
predicted_label = int(probs.argmax(-1).item())
prob = probs[predicted_label].item()
cls_name = self.model.config.id2label[predicted_label]
return cls_name, prob, probs.numpy()
@staticmethod
def _load_example_lists() -> Dict[int, List[str]]:
""" Load example retina images from disk.
Returns:
Dict[int, List[str]]: Dictionary of cls_id -> list of images paths.
"""
example_flat_list = glob.glob("demo_data/demo/**/*.jpeg")
example_lists: Dict[int, List[str]] = defaultdict(list)
for path in example_flat_list:
dir, _ = os.path.split(path)
_, subdir = os.path.split(dir)
try:
cls_id = int(subdir)
except ValueError:
print(f"Cannot parse path {path}")
continue
example_lists[cls_id].append(path)
return example_lists
def main():
""" App entry point. """
fetch_files()
app = App()
app.launch()
if __name__ == "__main__":
main()
|