Add answer source of app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from gensim.corpora import Dictionary, MmCorpus
|
4 |
+
from gensim.models import LdaModel, Word2Vec
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import streamlit as st
|
7 |
+
from pyLDAvis import prepared_data_to_html
|
8 |
+
import pyLDAvis.gensim_models as gensimvis
|
9 |
+
|
10 |
+
# 生データ・コーパス・辞書・モデルのロード
|
11 |
+
df = pd.read_csv("./raw_corpus.csv")
|
12 |
+
corpus = MmCorpus('./corpus.mm')
|
13 |
+
dict = Dictionary.load(f'./livedoor_demo.dict')
|
14 |
+
lda = LdaModel.load('./lda_demo.model')
|
15 |
+
|
16 |
+
st.caption("生データ一覧")
|
17 |
+
st.dataframe(df.iloc[:100])
|
18 |
+
|
19 |
+
st.caption("記事のカテゴリ")
|
20 |
+
fig, ax = plt.subplots()
|
21 |
+
count = df[["CATEGORY", "DOCUMENT"]].groupby("CATEGORY").count()
|
22 |
+
count.plot.pie(y="DOCUMENT", ax=ax, ylabel="", legend=False)
|
23 |
+
st.pyplot(fig)
|
24 |
+
|
25 |
+
# pyLDAvisによるトピックの可視化
|
26 |
+
vis = gensimvis.prepare(lda, corpus, dict)
|
27 |
+
html_string = prepared_data_to_html(vis)
|
28 |
+
st.components.v1.html(html_string, width=1300, height=800)
|