kaxap commited on
Commit
dfea597
·
1 Parent(s): 233cc1d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -10,6 +10,12 @@ from transformers import AutoTokenizer, AutoModel
10
  from sklearn.metrics.pairwise import cosine_similarity
11
 
12
 
 
 
 
 
 
 
13
  df = pd.read_csv('rjokes.csv')
14
  data_embeddings = np.load("rjokes-embeddings.npy")
15
 
@@ -43,7 +49,7 @@ with gr.Blocks() as demo:
43
  # Get corresponding 'text' for top k similar points
44
  top_k_text = df['text'].iloc[top_k_idx].tolist()
45
 
46
- chat_history.extend(f"{i+1}. {top_k_text[i]}" for i in range(len(top_k_text))))
47
  return "", chat_history
48
 
49
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
 
10
  from sklearn.metrics.pairwise import cosine_similarity
11
 
12
 
13
+ def average_pool(last_hidden_states: Tensor,
14
+ attention_mask: Tensor) -> Tensor:
15
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
16
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
17
+
18
+
19
  df = pd.read_csv('rjokes.csv')
20
  data_embeddings = np.load("rjokes-embeddings.npy")
21
 
 
49
  # Get corresponding 'text' for top k similar points
50
  top_k_text = df['text'].iloc[top_k_idx].tolist()
51
 
52
+ chat_history.extend([f"{i+1}. {top_k_text[i]}" for i in range(len(top_k_text))])
53
  return "", chat_history
54
 
55
  msg.submit(respond, [msg, chatbot], [msg, chatbot])