kazalbrur commited on
Commit
6097bd9
1 Parent(s): b18dba9

update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -14
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # Import necessary libraries
2
  import streamlit as st
3
  import numpy as np
4
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
@@ -6,30 +5,26 @@ from normalizer import normalize
6
 
7
  # Set the page configuration
8
  st.set_page_config(
9
- page_title="Bengalai to English Translator App", # Title of the app displayed in the browser tab
10
  page_icon=":shield:", # Path to a favicon or emoji to be displayed in the browser tab
11
  initial_sidebar_state="auto" # Initial state of the sidebar ("auto", "expanded", or "collapsed")
12
  )
13
 
14
-
15
  # Load custom CSS styling
16
  with open("assets/style.css") as f:
17
  st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
18
 
19
  # Function to load the pre-trained model
20
- # @st.cache_data(experimental_allow_widgets=False)
21
  def get_model():
22
- tokenizer = AutoTokenizer.from_pretrained("kazalbrur/BanglaEnglishTokenizerBanglaT5", use_fast=True) # Set legacy=False
23
- model = AutoModelForSeq2SeqLM.from_pretrained("kazalbrur/BanglaEnglishTranslationBanglaT5") # Set legacy=False
24
  return tokenizer, model
25
 
26
-
27
  # Load the tokenizer and model
28
  tokenizer, model = get_model()
29
 
30
-
31
  # Add a header to the Streamlit app
32
- st.header("Benglai to English Translator")
33
 
34
  # Add placeholder text with custom CSS styling
35
  st.markdown("<span style='color:black'>Enter your Bengali text here</span>", unsafe_allow_html=True)
@@ -43,9 +38,6 @@ submit_button = st.button("Translate")
43
  # Perform prediction when user input is provided and the submit button is clicked
44
  if user_input and submit_button:
45
  input_ids = tokenizer(normalize(user_input), padding=True, truncation=True, max_length=128, return_tensors="pt").input_ids
46
- generated_tokens = model.generate(input_ids, max_new_tokens=128) # Set max_new_tokens to control generation length
47
  decoded_tokens = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
48
- st.write(f"<span style='color:black'>Bangla Translation: {decoded_tokens}</span>", unsafe_allow_html=True)
49
-
50
-
51
-
 
 
1
  import streamlit as st
2
  import numpy as np
3
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
5
 
6
  # Set the page configuration
7
  st.set_page_config(
8
+ page_title="Bengali to English Translator App", # Title of the app displayed in the browser tab
9
  page_icon=":shield:", # Path to a favicon or emoji to be displayed in the browser tab
10
  initial_sidebar_state="auto" # Initial state of the sidebar ("auto", "expanded", or "collapsed")
11
  )
12
 
 
13
  # Load custom CSS styling
14
  with open("assets/style.css") as f:
15
  st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
16
 
17
  # Function to load the pre-trained model
 
18
  def get_model():
19
+ tokenizer = AutoTokenizer.from_pretrained("kazalbrur/BanglaEnglishTokenizerBanglaT5", use_fast=True)
20
+ model = AutoModelForSeq2SeqLM.from_pretrained("kazalbrur/BanglaEnglishTranslationBanglaT5")
21
  return tokenizer, model
22
 
 
23
  # Load the tokenizer and model
24
  tokenizer, model = get_model()
25
 
 
26
  # Add a header to the Streamlit app
27
+ st.header("Bengali to English Translator")
28
 
29
  # Add placeholder text with custom CSS styling
30
  st.markdown("<span style='color:black'>Enter your Bengali text here</span>", unsafe_allow_html=True)
 
38
  # Perform prediction when user input is provided and the submit button is clicked
39
  if user_input and submit_button:
40
  input_ids = tokenizer(normalize(user_input), padding=True, truncation=True, max_length=128, return_tensors="pt").input_ids
41
+ generated_tokens = model.generate(input_ids, max_new_tokens=128)
42
  decoded_tokens = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
43
+ st.write(f"<span style='color:black'>English Translation: {decoded_tokens}</span>", unsafe_allow_html=True)