File size: 4,998 Bytes
ab163d2
 
 
 
 
 
 
 
 
f722806
 
 
ab163d2
 
 
 
 
 
 
 
53435a7
ab163d2
 
 
 
 
 
 
 
 
 
d86379e
ab163d2
 
 
 
 
 
 
 
 
 
 
 
 
d86379e
ab163d2
 
 
 
 
 
 
 
 
 
 
 
f7975aa
ab163d2
 
 
 
 
 
 
 
 
 
 
f722806
ab163d2
 
 
 
 
 
 
 
 
 
f722806
ab163d2
 
f722806
ab163d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bf6b9
ab163d2
 
02bf6b9
ab163d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da7918
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import utils
import Model_Class 
import Model_Seg

import SimpleITK as sitk
import torch
from numpy import uint8
import spaces

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

image_base64 = utils.image_to_base64("anatomy_aware_pipeline.png")
article_html = f"<img src='data:image/png;base64,{image_base64}' alt='Anatomical pipeline illustration' style='width:100%;'>"

description_markdown = """
- This tool combines a U-Net Segmentation Model with a ResNet-50 for Classification.
- **Usage:** Just drag a pelvic x-ray into the box and hit run.
- **Process:** The input image will be segmented and cropped to the SIJ before classification.
- **Please Note:** This tool is intended for research purposes only.
- **Privacy:** Please ensure data privacy and don't upload any sensitive patient information to this tool. 
"""

css = """

h1 {
    text-align: center;
    display:block;
}
.markdown-block {
    background-color: #0b0f1a; /* Light gray background */
    color: white !important;             /* White text */
    padding: 10px;            /* Padding around the text */
    border-radius: 5px;       /* Rounded corners */
    box-shadow: 0 0 10px rgba(11,15,26,1);
    display: inline-flex;       /* Use inline-flex to shrink to content size */
    flex-direction: column;
    justify-content: center;    /* Vertically center content */
    align-items: center;        /* Horizontally center items within */
    margin: auto;               /* Center the block */
}

.markdown-block ul, .markdown-block ol {
    background-color: #1e2936;
    border-radius: 5px;
    color: white !important;
    padding: 10px;
    box-shadow: 0 0 10px rgba(0,0,0,0.3);
    padding-left: 20px;         /* Adjust padding for bullet alignment */
    text-align: left;           /* Ensure text within list is left-aligned */
    list-style-position: inside;/* Ensures bullets/numbers are inside the content flow */
}

footer {
    display:none !important
}
"""

@spaces.GPU(duration=20)
def predict_image(input_image, input_file):

    if input_image is not None:
        image_path = input_image

    elif input_file is not None:
        image_path = input_file
    
    else:
        return None , None , "Please input an image before pressing run" , None , None

    image_mask = Model_Seg.load_and_segment_image(image_path, device)

    overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask)

    image_mask_im = sitk.GetImageFromArray(image_mask[None, :, :].astype(uint8))
    image_im = sitk.GetImageFromArray(original_image_np[None, :, :].astype(uint8))
    cropped_boxed_im, _ = utils.mask_and_crop(image_im, image_mask_im)

    cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im)
    cropped_boxed_array_disp = cropped_boxed_array.squeeze()
    cropped_boxed_tensor = torch.Tensor(cropped_boxed_array)
    prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor, device)


    gradcam = Model_Class.make_GradCAM(image_transformed, device)
    
    nr_axSpA_prob = float(prediction[0].item())
    r_axSpA_prob = float(prediction[1].item())

    # Decision based on the threshold
    considered = "be considered r-axSpA" if r_axSpA_prob > 0.59 else "not be considered r-axSpA"

    explanation = f"According to the pre-determined cut-off threshold of 0.59, the image should  {considered}. This Tool is for research purposes only."

    pred_dict = {"nr-axSpA": nr_axSpA_prob, "r-axSpA": r_axSpA_prob}

    return  overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp




with gr.Blocks(title="Anatomy Aware axSpA") as iface:

    gr.Markdown("# Anatomy-Aware Image Classification for radiographic axSpA")
    gr.Markdown(description_markdown)

    with gr.Row():
        with gr.Column():

            with gr.Tab("PNG/JPG"):
                input_image = gr.Image(type='filepath', label="Upload an X-ray Image")

            with gr.Tab("NIfTI/DICOM"):
                input_file = gr.File(type='filepath', label="Upload an X-ray Image")

            with gr.Row():
                submit_button = gr.Button("Run", variant="primary")
                clear_button = gr.ClearButton()

        with gr.Column():
            overlay_image_np = gr.Image(label="Segmentation Mask")

            pred_dict = gr.Label(label="Prediction")
            explanation= gr.Textbox(label="Classification Decision")

            with gr.Accordion("Additional Information", open=False):
                gradcam = gr.Image(label="GradCAM")
                cropped_boxed_array_disp = gr.Image(label="Bounding Box")
    
    submit_button.click(predict_image, inputs = [input_image, input_file], outputs=[overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp])
    clear_button.add([input_image,overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp])
    gr.HTML(article_html)


if __name__ == "__main__":
    iface.queue()
    iface.launch()