Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import utils | |
import Model_Class | |
import Model_Seg | |
import SimpleITK as sitk | |
import torch | |
from numpy import uint8 | |
import spaces | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
image_base64 = utils.image_to_base64("anatomy_aware_pipeline.png") | |
article_html = f"<img src='data:image/png;base64,{image_base64}' alt='Anatomical pipeline illustration' style='width:100%;'>" | |
description_markdown = """ | |
- This tool combines a U-Net Segmentation Model with a ResNet-50 for Classification. | |
- For more info checkout the GitHub here: https://github.com/FJDorfner/Anatomy-Aware-Classification-axSpA | |
- **Usage:** Just drag a pelvic x-ray into the box and hit run. | |
- **Process:** The input image will be segmented and cropped to the SIJ before classification. | |
- **Please Note:** This tool is intended for research purposes only. | |
- **Privacy:** Please ensure data privacy and don't upload any sensitive patient information to this tool. | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display:block; | |
} | |
.markdown-block { | |
padding: 10px; /* Padding around the text */ | |
border-radius: 5px; /* Rounded corners */ | |
display: inline-flex; /* Use inline-flex to shrink to content size */ | |
flex-direction: column; | |
justify-content: center; /* Vertically center content */ | |
align-items: center; /* Horizontally center items within */ | |
margin: auto; /* Center the block */ | |
} | |
.markdown-block ul, .markdown-block ol { | |
border-radius: 5px; | |
padding: 10px; | |
padding-left: 20px; /* Adjust padding for bullet alignment */ | |
text-align: left; /* Ensure text within list is left-aligned */ | |
list-style-position: inside;/* Ensures bullets/numbers are inside the content flow */ | |
} | |
footer { | |
display:none !important | |
} | |
""" | |
def predict_image(input_image, input_file): | |
if input_image is not None: | |
image_path = input_image | |
elif input_file is not None: | |
image_path = input_file | |
else: | |
return None , None , "Please input an image before pressing run" , None , None | |
image_mask = Model_Seg.load_and_segment_image(image_path, device) | |
overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask) | |
image_mask_im = sitk.GetImageFromArray(image_mask[None, :, :].astype(uint8)) | |
image_im = sitk.GetImageFromArray(original_image_np[None, :, :].astype(uint8)) | |
cropped_boxed_im, _ = utils.mask_and_crop(image_im, image_mask_im) | |
cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im) | |
cropped_boxed_array_disp = cropped_boxed_array.squeeze() | |
cropped_boxed_tensor = torch.Tensor(cropped_boxed_array) | |
prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor, device) | |
gradcam = Model_Class.make_GradCAM(image_transformed, device) | |
nr_axSpA_prob = float(prediction[0].item()) | |
r_axSpA_prob = float(prediction[1].item()) | |
# Decision based on the threshold | |
considered = "be considered r-axSpA" if r_axSpA_prob > 0.59 else "not be considered r-axSpA" | |
explanation = f"According to the pre-determined cut-off threshold of 0.59, the image should {considered}. This Tool is for research purposes only." | |
pred_dict = {"nr-axSpA": nr_axSpA_prob, "r-axSpA": r_axSpA_prob} | |
return overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp | |
with gr.Blocks(css=css, title="Anatomy Aware axSpA") as iface: | |
gr.Markdown("# Anatomy-Aware Image Classification for radiographic axSpA") | |
gr.Markdown(description_markdown, elem_classes="markdown-block") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("PNG/JPG"): | |
input_image = gr.Image(type='filepath', label="Upload an X-ray Image") | |
with gr.Tab("NIfTI/DICOM"): | |
input_file = gr.File(type='filepath', label="Upload an X-ray Image") | |
with gr.Row(): | |
submit_button = gr.Button("Run", variant="primary") | |
clear_button = gr.ClearButton() | |
with gr.Column(): | |
overlay_image_np = gr.Image(label="Segmentation Mask") | |
pred_dict = gr.Label(label="Prediction") | |
explanation= gr.Textbox(label="Classification Decision") | |
with gr.Accordion("Additional Information", open=False): | |
gradcam = gr.Image(label="GradCAM") | |
cropped_boxed_array_disp = gr.Image(label="Bounding Box") | |
submit_button.click(predict_image, inputs = [input_image, input_file], outputs=[overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp]) | |
clear_button.add([input_image,overlay_image_np, pred_dict, explanation, gradcam, cropped_boxed_array_disp]) | |
gr.HTML(article_html) | |
if __name__ == "__main__": | |
iface.queue() | |
iface.launch() | |