kbressem commited on
Commit
aca82f8
·
verified ·
1 Parent(s): 77d3285

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -7,6 +7,8 @@ import SimpleITK as sitk
7
  import torch
8
  from numpy import uint8
9
  import spaces
 
 
10
 
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
 
@@ -64,14 +66,19 @@ def predict_image(input_image, input_file):
64
  image_mask = Model_Seg.load_and_segment_image(image_path, device)
65
 
66
  overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask)
 
 
67
 
68
  image_mask_im = sitk.GetImageFromArray(image_mask[None, :, :].astype(uint8))
69
  image_im = sitk.GetImageFromArray(original_image_np[None, :, :].astype(uint8))
70
  cropped_boxed_im, _ = utils.mask_and_crop(image_im, image_mask_im)
71
 
72
  cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im)
73
- cropped_boxed_array_disp = cropped_boxed_array.squeeze()
74
  cropped_boxed_tensor = torch.Tensor(cropped_boxed_array)
 
 
 
 
75
  prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor, device)
76
 
77
 
 
7
  import torch
8
  from numpy import uint8
9
  import spaces
10
+ from numpy import uint8, rot90, fliplr
11
+ from monai.transforms import Rotate90
12
 
13
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
 
 
66
  image_mask = Model_Seg.load_and_segment_image(image_path, device)
67
 
68
  overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask)
69
+ overlay_image_np = rot90(overlay_image_np, k=3)
70
+ overlay_image_np = fliplr(overlay_image_np)
71
 
72
  image_mask_im = sitk.GetImageFromArray(image_mask[None, :, :].astype(uint8))
73
  image_im = sitk.GetImageFromArray(original_image_np[None, :, :].astype(uint8))
74
  cropped_boxed_im, _ = utils.mask_and_crop(image_im, image_mask_im)
75
 
76
  cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im)
 
77
  cropped_boxed_tensor = torch.Tensor(cropped_boxed_array)
78
+ rotate = Rotate90(spatial_axes=(0, 1), k=3)
79
+
80
+ cropped_boxed_tensor = rotate(cropped_boxed_tensor)
81
+ cropped_boxed_array_disp = cropped_boxed_tensor.numpy().squeeze().astype(uint8)
82
  prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor, device)
83
 
84