import gradio as gr import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, ) import os from threading import Thread import spaces import time #token = os.environ["HF_TOKEN"] quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( "shisa-ai/shisa-v1-qwen2-7b", quantization_config=quantization_config) tok = AutoTokenizer.from_pretrained("shisa-ai/shisa-v1-qwen2-7b") #terminators = [ # tok.eos_token_id, # tok.convert_tokens_to_ids("<|eot_id|>") #] if torch.cuda.is_available(): device = torch.device("cuda") print(f"Using GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device("cpu") print("Using CPU") # model = model.to(device) # Dispatch Errors @spaces.GPU(duration=120) def chat(message, history, temperature,do_sample, max_tokens): chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = tok([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer( tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, eos_token_id=tok.eos_token_id, # terminatorsをeos_token_idに変更 ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_text = "" for new_text in streamer: partial_text += new_text yield partial_text tokens = len(tok.tokenize(partial_text)) yield partial_text demo = gr.ChatInterface( fn=chat, examples=[["Write me a poem about Machine Learning."]], # multimodal=False, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False ), gr.Checkbox(label="Sampling",value=True), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), ], stop_btn="Stop Generation", title="Chat With LLMs", description="Now Running [shisa-ai/shisa-v1-qwen2-7b](https://huggingface.co/shisa-ai/shisa-v1-qwen2-7b) in 4bit" ) demo.launch()