Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,73 @@ import torch
|
|
3 |
import json
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("keminglu/pivoine-7b", use_auth_token="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", padding_side="left")
|
7 |
model = AutoModelForCausalLM.from_pretrained("keminglu/pivoine-7b", use_auth_token="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", torch_dtype=torch.float16)
|
8 |
-
#input_device = torch.device("cuda:5")
|
9 |
model.requires_grad_(False)
|
10 |
model.eval()
|
11 |
-
|
|
|
12 |
|
13 |
examples = json.load(open("examples.json"))
|
14 |
-
description = open("description.txt").read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import json
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
if torch.cuda.is_available():
|
7 |
+
use_cuda = True
|
8 |
+
else:
|
9 |
+
use_cuda = False
|
10 |
+
|
11 |
tokenizer = AutoTokenizer.from_pretrained("keminglu/pivoine-7b", use_auth_token="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", padding_side="left")
|
12 |
model = AutoModelForCausalLM.from_pretrained("keminglu/pivoine-7b", use_auth_token="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", torch_dtype=torch.float16)
|
|
|
13 |
model.requires_grad_(False)
|
14 |
model.eval()
|
15 |
+
if use_cuda:
|
16 |
+
model = model.to("cuda")
|
17 |
|
18 |
examples = json.load(open("examples.json"))
|
19 |
+
description = open("description.txt").read()
|
20 |
+
|
21 |
+
def inference(context, instruction, num_beams:int=4):
|
22 |
+
input_str = f"\"{context}\"\n\n{instruction}"
|
23 |
+
if not input_str.endswith("."):
|
24 |
+
input_str += "."
|
25 |
+
|
26 |
+
input_tokens = tokenizer(input_str, return_tensors="pt", padding=True)
|
27 |
+
if use_cuda:
|
28 |
+
for t in input_tokens:
|
29 |
+
if torch.is_tensor(input_tokens[t]):
|
30 |
+
input_tokens[t] = input_tokens[t].to(input_device)
|
31 |
+
|
32 |
+
output = model.generate(
|
33 |
+
input_tokens['input_ids'],
|
34 |
+
num_beams=num_beams,
|
35 |
+
do_sample=False,
|
36 |
+
max_new_tokens=2048,
|
37 |
+
num_return_sequences=1,
|
38 |
+
return_dict_in_generate=True,
|
39 |
+
)
|
40 |
+
|
41 |
+
num_input_tokens = input_tokens["input_ids"].shape[1]
|
42 |
+
output_tokens = output.sequences
|
43 |
+
generated_tokens = output_tokens[:, num_input_tokens:]
|
44 |
+
num_generated_tokens = (generated_tokens != tokenizer.pad_token_id).sum(dim=-1).tolist()[0]
|
45 |
+
prefix_to_add = torch.tensor([[tokenizer("A")["input_ids"][0]]]).to(input_device)
|
46 |
+
generated_tokens = torch.cat([prefix_to_add, generated_tokens], dim=1)
|
47 |
+
generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
48 |
+
string_output = [i[1:].strip() for i in generated_text][0]
|
49 |
+
json_output = None
|
50 |
+
try:
|
51 |
+
json_output = json.loads(string_output)
|
52 |
+
except json.JSONDecodeError:
|
53 |
+
json_output = {"error": "Unfortunately, there is a JSON decode error on your output, which is really rare in our experiment :("}
|
54 |
+
except Exception as e:
|
55 |
+
raise gr.Error(e)
|
56 |
+
|
57 |
+
return num_generated_tokens, string_output, json_output
|
58 |
+
|
59 |
+
demo = gr.Interface(
|
60 |
+
fn=inference,
|
61 |
+
inputs=["text", "text", gr.Slider(1,5,value=4,step=1)],
|
62 |
+
outputs=[
|
63 |
+
gr.Number(label="Number of Generated Tokens"),
|
64 |
+
gr.Textbox(label="Raw String Output"),
|
65 |
+
gr.JSON(label="Json Output")],
|
66 |
+
examples=examples,
|
67 |
+
examples_per_page=3,
|
68 |
+
title="Instruction-following Open-world Information Extraction",
|
69 |
+
description=description,
|
70 |
+
)
|
71 |
+
|
72 |
+
demo.launch(
|
73 |
+
share=True,
|
74 |
+
auth=("miega", "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"),
|
75 |
+
show_error=True)
|