File size: 4,991 Bytes
3860419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os

import datasets
import pandas as pd


_CITATION = """\
@article{li2023cmmlu,
  title={CMMLU: Measuring massive multitask language understanding in Chinese},
  author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
  journal={arXiv preprint arXiv:2306.09212},
  year={2023}
}
"""

_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
"""

_HOMEPAGE = "https://github.com/haonan-li/CMMLU"

_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"

_URL = "cmmlu.zip"

task_list = [
    "agronomy",
    "anatomy",
    "ancient_chinese",
    "arts",
    "astronomy",
    "business_ethics",
    "chinese_civil_service_exam",
    "chinese_driving_rule",
    "chinese_food_culture",
    "chinese_foreign_policy",
    "chinese_history",
    "chinese_literature",
    "chinese_teacher_qualification",
    "clinical_knowledge",
    "college_actuarial_science",
    "college_education",
    "college_engineering_hydrology",
    "college_law",
    "college_mathematics",
    "college_medical_statistics",
    "college_medicine",
    "computer_science",
    "computer_security",
    "conceptual_physics",
    "construction_project_management",
    "economics",
    "education",
    "electrical_engineering",
    "elementary_chinese",
    "elementary_commonsense",
    "elementary_information_and_technology",
    "elementary_mathematics",
    "ethnology",
    "food_science",
    "genetics",
    "global_facts",
    "high_school_biology",
    "high_school_chemistry",
    "high_school_geography",
    "high_school_mathematics",
    "high_school_physics",
    "high_school_politics",
    "human_sexuality",
    "international_law",
    "journalism",
    "jurisprudence",
    "legal_and_moral_basis",
    "logical",
    "machine_learning",
    "management",
    "marketing",
    "marxist_theory",
    "modern_chinese",
    "nutrition",
    "philosophy",
    "professional_accounting",
    "professional_law",
    "professional_medicine",
    "professional_psychology",
    "public_relations",
    "security_study",
    "sociology",
    "sports_science",
    "traditional_chinese_medicine",
    "virology",
    "world_history",
    "world_religions",
]


class CMMLUConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super().__init__(version=datasets.Version("1.0.1"), **kwargs)


class CMMLU(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CMMLUConfig(
            name=task_name,
        )
        for task_name in task_list
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "A": datasets.Value("string"),
                "B": datasets.Value("string"),
                "C": datasets.Value("string"),
                "D": datasets.Value("string"),
                "answer": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        task_name = self.config.name
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
                },
            ),
        ]

    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
        for i, instance in enumerate(df.to_dict(orient="records")):
            question = instance.pop("Question", "")
            answer = instance.pop("Answer", "")
            instance["question"] = question
            instance["answer"] = answer
            yield i, instance