File size: 2,870 Bytes
886d8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
title: AWS Sagemaker
---

To use Open Interpreter with a model from AWS Sagemaker, set the `model` flag:

<CodeGroup>

```bash Terminal
interpreter --model sagemaker/<model-name>
```

```python Python
# Sagemaker requires boto3 to be installed on your machine:
!pip install boto3

from interpreter import interpreter

interpreter.llm.model = "sagemaker/<model-name>"
interpreter.chat()
```

</CodeGroup>

# Supported Models

We support the following completion models from AWS Sagemaker:

- Meta Llama 2 7B
- Meta Llama 2 7B (Chat/Fine-tuned)
- Meta Llama 2 13B
- Meta Llama 2 13B (Chat/Fine-tuned)
- Meta Llama 2 70B
- Meta Llama 2 70B (Chat/Fine-tuned)
- Your Custom Huggingface Model

<CodeGroup>

```bash Terminal

interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b
interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b-f
interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b
interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b-f
interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b
interpreter --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b-b-f
interpreter --model sagemaker/<your-hugginface-deployment-name>
```

```python Python
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b"
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b-f"
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b"
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b-f"
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b"
interpreter.llm.model = "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b-b-f"
interpreter.llm.model = "sagemaker/<your-hugginface-deployment-name>"
```

</CodeGroup>

# Required Environment Variables

Set the following environment variables [(click here to learn how)](https://chat.openai.com/share/1062cdd8-62a1-4aa8-8ec9-eca45645971a) to use these models.

| Environment Variable    | Description                                     | Where to Find                                                                       |
| ----------------------- | ----------------------------------------------- | ----------------------------------------------------------------------------------- |
| `AWS_ACCESS_KEY_ID`     | The API access key for your AWS account.        | [AWS Account Overview -> Security Credentials](https://console.aws.amazon.com/)     |
| `AWS_SECRET_ACCESS_KEY` | The API secret access key for your AWS account. | [AWS Account Overview -> Security Credentials](https://console.aws.amazon.com/)     |
| `AWS_REGION_NAME`       | The AWS region you want to use                  | [AWS Account Overview -> Navigation bar -> Region](https://console.aws.amazon.com/) |