Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,560 Bytes
e91d22b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
#!/usr/bin/env python3
from dotenv import load_dotenv
# Load default environment variables (.env)
load_dotenv()
import os
import time
import logging
from collections import deque
from typing import Dict, List
import importlib
import openai
import chromadb
import tiktoken as tiktoken
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
import re
from groq import Groq
# default opt out of chromadb telemetry.
from chromadb.config import Settings
from transformers import AutoTokenizer, AutoModel
import torch
import numpy
# モデル名を指定
model_name = "sentence-transformers/all-MiniLM-L6-v2"
# トークナイザーとモデルをロード
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
client = chromadb.Client(Settings(anonymized_telemetry=False))
# Engine configuration
# Model: GPT, LLAMA, HUMAN, etc.
LLM_MODEL = os.getenv("LLM_MODEL", os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")).lower()
# API Keys
OPENAI_API_KEY = os.getenv("api_key", "")
if not (LLM_MODEL.startswith("llama") or LLM_MODEL.startswith("human")):
assert OPENAI_API_KEY, "\033[91m\033[1m" + "OPENAI_API_KEY environment variable is missing from .env" + "\033[0m\033[0m"
# Table config
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", ""))
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m"
# Run configuration
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI"))
COOPERATIVE_MODE = "none"
JOIN_EXISTING_OBJECTIVE = False
# Goal configuration
#OBJECTIVE = os.getenv("OBJECTIVE", "")
OBJECTIVE = "ボットの性能をよくする方法 日本語で説明"
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))
# Model configuration
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
# Extensions support begin
def can_import(module_name):
try:
importlib.import_module(module_name)
return True
except ImportError:
return False
DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ")
# Command line arguments extension
# Can override any of the above environment variables
ENABLE_COMMAND_LINE_ARGS = (
os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true"
)
if ENABLE_COMMAND_LINE_ARGS:
if can_import("extensions.argparseext"):
from extensions.argparseext import parse_arguments
OBJECTIVE, INITIAL_TASK, LLM_MODEL, DOTENV_EXTENSIONS, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE = parse_arguments()
# Human mode extension
# Gives human input to babyagi
if LLM_MODEL.startswith("human"):
if can_import("extensions.human_mode"):
from extensions.human_mode import user_input_await
# Load additional environment variables for enabled extensions
# TODO: This might override the following command line arguments as well:
# OBJECTIVE, INITIAL_TASK, LLM_MODEL, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE
if DOTENV_EXTENSIONS:
if can_import("extensions.dotenvext"):
from extensions.dotenvext import load_dotenv_extensions
load_dotenv_extensions(DOTENV_EXTENSIONS)
# TODO: There's still work to be done here to enable people to get
# defaults from dotenv extensions, but also provide command line
# arguments to override them
# Extensions support end
print("\033[95m\033[1m" + "\n*****CONFIGURATION*****\n" + "\033[0m\033[0m")
print(f"Name : {INSTANCE_NAME}")
print(f"Mode : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}")
print(f"LLM : {LLM_MODEL}")
# Check if we know what we are doing
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m"
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m"
LLAMA_MODEL_PATH = os.getenv("LLAMA_MODEL_PATH", "models/llama-13B/ggml-model.bin")
if LLM_MODEL.startswith("llama"):
if can_import("llama_cpp"):
from llama_cpp import Llama
print(f"LLAMA : {LLAMA_MODEL_PATH}" + "\n")
assert os.path.exists(LLAMA_MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m"
CTX_MAX = 1024
LLAMA_THREADS_NUM = int(os.getenv("LLAMA_THREADS_NUM", 8))
print('Initialize model for evaluation')
llm = Llama(
model_path=LLAMA_MODEL_PATH,
n_ctx=CTX_MAX,
n_threads=LLAMA_THREADS_NUM,
n_batch=512,
use_mlock=False,
)
print('\nInitialize model for embedding')
llm_embed = Llama(
model_path=LLAMA_MODEL_PATH,
n_ctx=CTX_MAX,
n_threads=LLAMA_THREADS_NUM,
n_batch=512,
embedding=True,
use_mlock=False,
)
print(
"\033[91m\033[1m"
+ "\n*****USING LLAMA.CPP. POTENTIALLY SLOW.*****"
+ "\033[0m\033[0m"
)
else:
print(
"\033[91m\033[1m"
+ "\nLlama LLM requires package llama-cpp. Falling back to GPT-3.5-turbo."
+ "\033[0m\033[0m"
)
LLM_MODEL = "gpt-3.5-turbo"
if LLM_MODEL.startswith("gpt-4"):
print(
"\033[91m\033[1m"
+ "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****"
+ "\033[0m\033[0m"
)
if LLM_MODEL.startswith("human"):
print(
"\033[91m\033[1m"
+ "\n*****USING HUMAN INPUT*****"
+ "\033[0m\033[0m"
)
print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")
if not JOIN_EXISTING_OBJECTIVE:
print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
else:
print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m")
# Configure OpenAI
openai.api_key = os.getenv("api_key")
# Llama embedding function
class LlamaEmbeddingFunction(EmbeddingFunction):
def __init__(self):
return
def __call__(self, texts: Documents) -> Embeddings:
embeddings = []
for t in texts:
e = llm_embed.embed(t)
embeddings.append(e)
return embeddings
# Results storage using local ChromaDB
class DefaultResultsStorage:
def __init__(self):
logging.getLogger('chromadb').setLevel(logging.ERROR)
# Create Chroma collection
chroma_persist_dir = "chroma"
chroma_client = chromadb.PersistentClient(
settings=chromadb.config.Settings(
persist_directory=chroma_persist_dir,
)
)
metric = "cosine"
if LLM_MODEL.startswith("llama"):
embedding_function = LlamaEmbeddingFunction()
else:
embedding_function = OpenAIEmbeddingFunction(api_key=OPENAI_API_KEY)
self.collection = chroma_client.get_or_create_collection(
name=RESULTS_STORE_NAME,
metadata={"hnsw:space": metric},
embedding_function=embedding_function,
)
def add(self, task: Dict, result: str, result_id: str):
# Break the function if LLM_MODEL starts with "human" (case-insensitive)
if LLM_MODEL.startswith("human"):
return
return
#from langchain_community.chat_models import ChatOpenAI
# Continue with the rest of the function
#llm_embed = ChatOpenAI(model_name="lama3-70b-8192",
# openai_api_key="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",
# openai_api_base="https://api.groq.com/openai/v1",
# )
#import openai
#openai.api_key = "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"
#openai.api_base = "https://api.groq.com/openai/v1"
#response = openai.embeddings.create(input=result,
# model="lama3-70b-8192",
#
inputs = tokenizer(result, return_tensors="pt")
outputs = model(**inputs)
# [CLS]トークンの出力を取得
embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist()
#cls_embedding = outputs.last_hidden_state[:, 0, :].squeeze()
# テンソルが CPU 上にあることを確認し、NumPy 配列に変換
#cls_embedding_np = cls_embedding.detach().cpu().numpy()
#embeddings = response['data'][0]['embedding']
embeddings = llm_embed.embed(result) if LLM_MODEL.startswith("llama") else None
if (
len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0
): # Check if the result already exists
self.collection.update(
ids=result_id,
embeddings=embeddings,
documents=result,
metadatas={"task": task["task_name"], "result": result},
)
else:
self.collection.add(
ids=result_id,
embeddings=embeddings,
documents=result,
metadatas={"task": task["task_name"], "result": result},
)
def query(self, query: str, top_results_num: int) -> List[dict]:
count: int = self.collection.count()
if count == 0:
return []
results = self.collection.query(
query_texts=query,
n_results=min(top_results_num, count),
include=["metadatas"]
)
return [item["task"] for item in results["metadatas"][0]]
# Initialize results storage
def try_weaviate():
WEAVIATE_URL = os.getenv("WEAVIATE_URL", "")
WEAVIATE_USE_EMBEDDED = os.getenv("WEAVIATE_USE_EMBEDDED", "False").lower() == "true"
if (WEAVIATE_URL or WEAVIATE_USE_EMBEDDED) and can_import("extensions.weaviate_storage"):
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY", "")
from extensions.weaviate_storage import WeaviateResultsStorage
print("\nUsing results storage: " + "\033[93m\033[1m" + "Weaviate" + "\033[0m\033[0m")
return WeaviateResultsStorage(OPENAI_API_KEY, WEAVIATE_URL, WEAVIATE_API_KEY, WEAVIATE_USE_EMBEDDED, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
return None
def try_pinecone():
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "")
if PINECONE_API_KEY and can_import("extensions.pinecone_storage"):
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "")
assert (
PINECONE_ENVIRONMENT
), "\033[91m\033[1m" + "PINECONE_ENVIRONMENT environment variable is missing from .env" + "\033[0m\033[0m"
from extensions.pinecone_storage import PineconeResultsStorage
print("\nUsing results storage: " + "\033[93m\033[1m" + "Pinecone" + "\033[0m\033[0m")
return PineconeResultsStorage(OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_ENVIRONMENT, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
return None
def use_chroma():
print("\nUsing results storage: " + "\033[93m\033[1m" + "Chroma (Default)" + "\033[0m\033[0m")
return DefaultResultsStorage()
results_storage = try_weaviate() or try_pinecone() or use_chroma()
# Task storage supporting only a single instance of BabyAGI
class SingleTaskListStorage:
def __init__(self):
self.tasks = deque([])
self.task_id_counter = 0
def append(self, task: Dict):
self.tasks.append(task)
def replace(self, tasks: List[Dict]):
self.tasks = deque(tasks)
def popleft(self):
return self.tasks.popleft()
def is_empty(self):
return False if self.tasks else True
def next_task_id(self):
self.task_id_counter += 1
return self.task_id_counter
def get_task_names(self):
return [t["task_name"] for t in self.tasks]
# Initialize tasks storage
tasks_storage = SingleTaskListStorage()
if COOPERATIVE_MODE in ['l', 'local']:
if can_import("extensions.ray_tasks"):
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent))
from extensions.ray_tasks import CooperativeTaskListStorage
tasks_storage = CooperativeTaskListStorage(OBJECTIVE)
print("\nReplacing tasks storage: " + "\033[93m\033[1m" + "Ray" + "\033[0m\033[0m")
elif COOPERATIVE_MODE in ['d', 'distributed']:
pass
def limit_tokens_from_string(string: str, model: str, limit: int) -> str:
"""Limits the string to a number of tokens (estimated)."""
try:
encoding = tiktoken.encoding_for_model(model)
except:
encoding = tiktoken.encoding_for_model('gpt2') # Fallback for others.
encoded = encoding.encode(string)
return encoding.decode(encoded[:limit])
def openai_call(
prompt: str,
model: str = LLM_MODEL,
temperature: float = OPENAI_TEMPERATURE,
max_tokens: int = 100,
):
while True:
messages=[
{
"role": "user",
"content": "prompt"
}
],
client = Groq(api_key=os.getenv("api_key"))
res = ""
print(prompt)
completion = client.chat.completions.create(
model="llama3-8b-8192",
messages=[
{
"role": "user",
"content": prompt
}
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
for chunk in completion:
#print(chunk.choices[0].delta.content)
#print(chunk.choices[0].delta.content or "", end="")
res += chunk.choices[0].delta.content or ""
return res
while True:
try:
if model.lower().startswith("llama"):
result = llm(prompt[:CTX_MAX],
stop=["### Human"],
echo=False,
temperature=0.2,
top_k=40,
top_p=0.95,
repeat_penalty=1.05,
max_tokens=200)
# print('\n*****RESULT JSON DUMP*****\n')
# print(json.dumps(result))
# print('\n')
for chunk in completion:
print(chunk.choices[0].delta.content or "", end="")
return result['choices'][0]['text'].strip()
elif model.lower().startswith("human"):
return user_input_await(prompt)
elif not model.lower().startswith("gpt-"):
# Use completion API
response = openai.Completion.create(
engine=model,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
return response.choices[0].text.strip()
else:
# Use 4000 instead of the real limit (4097) to give a bit of wiggle room for the encoding of roles.
# TODO: different limits for different models.
trimmed_prompt = limit_tokens_from_string(prompt, model, 4000 - max_tokens)
# Use chat completion API
messages = [{"role": "system", "content": trimmed_prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
stop=None,
)
return response.choices[0].message.content.strip()
except openai.error.RateLimitError:
print(
" *** The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.Timeout:
print(
" *** OpenAI API timeout occurred. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.APIError:
print(
" *** OpenAI API error occurred. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.APIConnectionError:
print(
" *** OpenAI API connection error occurred. Check your network settings, proxy configuration, SSL certificates, or firewall rules. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.InvalidRequestError:
print(
" *** OpenAI API invalid request. Check the documentation for the specific API method you are calling and make sure you are sending valid and complete parameters. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.ServiceUnavailableError:
print(
" *** OpenAI API service unavailable. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
else:
break
def task_creation_agent(
objective: str, result: Dict, task_description: str, task_list: List[str]
):
prompt = f"""
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
The last completed task has the result: \n{result["data"]}
This result was based on this task description: {task_description}.\n"""
if task_list:
prompt += f"These are incomplete tasks: {', '.join(task_list)}\n"
prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. "
if task_list:
prompt += "These new tasks must not overlap with incomplete tasks. "
prompt += """
Return one task per line in your response. The result must be a numbered list in the format:
#. First task
#. Second task
The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time."
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output."""
print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n')
response = openai_call(prompt, max_tokens=4000)
print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n')
new_tasks = response.split('\n')
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip() and task_id.isnumeric():
new_tasks_list.append(task_name)
# print('New task created: ' + task_name)
out = [{"task_name": task_name} for task_name in new_tasks_list]
return out
def prioritization_agent():
task_names = tasks_storage.get_task_names()
bullet_string = '\n'
prompt = f"""
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)}
Consider the ultimate objective of your team: {OBJECTIVE}.
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective.
Do not remove any tasks. Return the ranked tasks as a numbered list in the format:
#. First task
#. Second task
The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list with any other output."""
print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n')
response = openai_call(prompt, max_tokens=2000)
print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n')
if not response:
print('Received empty response from priotritization agent. Keeping task list unchanged.')
return
new_tasks = response.split("\n") if "\n" in response else [response]
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip():
new_tasks_list.append({"task_id": task_id, "task_name": task_name})
return new_tasks_list
# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
"""
Executes a task based on the given objective and previous context.
Args:
objective (str): The objective or goal for the AI to perform the task.
task (str): The task to be executed by the AI.
Returns:
str: The response generated by the AI for the given task.
"""
context = context_agent(query=objective, top_results_num=5)
# print("\n****RELEVANT CONTEXT****\n")
# print(context)
# print('')
prompt = f'Perform one task based on the following objective: {objective}.\n'
if context:
prompt += 'Take into account these previously completed tasks:' + '\n'.join(context)
prompt += f'\nYour task: {task}\nResponse:'
return openai_call(prompt, max_tokens=2000)
# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
"""
Retrieves context for a given query from an index of tasks.
Args:
query (str): The query or objective for retrieving context.
top_results_num (int): The number of top results to retrieve.
Returns:
list: A list of tasks as context for the given query, sorted by relevance.
"""
results = results_storage.query(query=query, top_results_num=top_results_num)
# print("****RESULTS****")
# print(results)
return results
# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
initial_task = {
"task_id": tasks_storage.next_task_id(),
"task_name": INITIAL_TASK
}
tasks_storage.append(initial_task)
def main():
loop = True
while loop:
# As long as there are tasks in the storage...
if not tasks_storage.is_empty():
#OBJECTIVE = "ボットの性能をよくする方法 日本語で説明"
# Print the task list
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in tasks_storage.get_task_names():
print(" • " + str(t))
# Step 1: Pull the first incomplete task
task = tasks_storage.popleft()
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_name"]))
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE, str(task["task_name"]))
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in the results storage
# This is where you should enrich the result if needed
enriched_result = {
"data": result
}
# extract the actual result from the dictionary
# since we don't do enrichment currently
# vector = enriched_result["data"]
result_id = f"result_{task['task_id']}"
#results_storage.add(task, result, result_id)
# Step 3: Create new tasks and re-prioritize task list
# only the main instance in cooperative mode does that
new_tasks = task_creation_agent(
OBJECTIVE,
enriched_result,
task["task_name"],
tasks_storage.get_task_names(),
)
print('Adding new tasks to task_storage')
for new_task in new_tasks:
new_task.update({"task_id": tasks_storage.next_task_id()})
print(str(new_task))
tasks_storage.append(new_task)
if not JOIN_EXISTING_OBJECTIVE:
prioritized_tasks = prioritization_agent()
if prioritized_tasks:
tasks_storage.replace(prioritized_tasks)
# Sleep a bit before checking the task list again
time.sleep(5)
else:
print('Done.')
loop = False
if __name__ == "__main__":
main()
|