Spaces:
Running
on
Zero
Running
on
Zero
import pandas as pd | |
from eval.evaluator import Eval | |
from dataset.base_dataset import DatasetBase | |
from utils.llm_chain import MetaChain | |
from estimator import give_estimator | |
from pathlib import Path | |
import pickle | |
import os | |
import json | |
import logging | |
import wandb | |
class OptimizationPipeline: | |
""" | |
The main pipeline for optimization. The pipeline is composed of 4 main components: | |
1. dataset - The dataset handle the data including the annotation and the prediction | |
2. annotator - The annotator is responsible generate the GT | |
3. predictor - The predictor is responsible to generate the prediction | |
4. eval - The eval is responsible to calculate the score and the large errors | |
""" | |
def __init__(self, config, task_description: str = None, initial_prompt: str = None, output_path: str = ''): | |
""" | |
Initialize a new instance of the ClassName class. | |
:param config: The configuration file (EasyDict) | |
:param task_description: Describe the task that needed to be solved | |
:param initial_prompt: Provide an initial prompt to solve the task | |
:param output_path: The output dir to save dump, by default the dumps are not saved | |
""" | |
if config.use_wandb: # In case of using W&B | |
wandb.login() | |
self.wandb_run = wandb.init( | |
project="AutoGPT", | |
config=config, | |
) | |
if output_path == '': | |
self.output_path = None | |
else: | |
if not os.path.isdir(output_path): | |
os.makedirs(output_path) | |
self.output_path = Path(output_path) | |
logging.basicConfig(filename=self.output_path / 'info.log', level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s', force=True) | |
self.dataset = None | |
self.config = config | |
self.meta_chain = MetaChain(config) | |
self.initialize_dataset() | |
self.task_description = task_description | |
self.cur_prompt = initial_prompt | |
self.predictor = give_estimator(config.predictor) | |
self.annotator = give_estimator(config.annotator) | |
self.eval = Eval(config.eval, self.meta_chain.error_analysis, self.dataset.label_schema) | |
self.batch_id = 0 | |
self.patient = 0 | |
def log_and_print(message): | |
print(message) | |
logging.info(message) | |
def initialize_dataset(self): | |
""" | |
Initialize the dataset: Either empty dataset or loading an existing dataset | |
""" | |
logging.info('Initialize dataset') | |
self.dataset = DatasetBase(self.config.dataset) | |
if 'initial_dataset' in self.config.dataset.keys(): | |
logging.info(f'Load initial dataset from {self.config.dataset.initial_dataset}') | |
self.dataset.load_dataset(self.config.dataset.initial_dataset) | |
def calc_usage(self): | |
""" | |
Calculate the usage of the optimization process (either $ in case of openAI or #tokens the other cases) | |
""" | |
total_usage = 0 | |
total_usage += self.meta_chain.calc_usage() | |
total_usage += self.annotator.calc_usage() | |
total_usage += self.predictor.calc_usage() | |
return total_usage | |
def extract_best_prompt(self): | |
sorted_history = sorted( | |
self.eval.history[min(self.config.meta_prompts.warmup - 1, len(self.eval.history) - 1):], | |
key=lambda x: x['score'], | |
reverse=False) | |
return {'prompt': sorted_history[-1]['prompt'], 'score': sorted_history[-1]['score']} | |
def run_step_prompt(self): | |
""" | |
Run the meta-prompts and get new prompt suggestion, estimated prompt score and a set of challenging samples | |
for the new prompts | |
""" | |
step_num = len(self.eval.history) | |
if (step_num < self.config.meta_prompts.warmup) or (step_num % 3) > 0: | |
last_history = self.eval.history[-self.config.meta_prompts.history_length:] | |
else: | |
sorted_history = sorted(self.eval.history[self.config.meta_prompts.warmup - 1:], key=lambda x: x['score'], | |
reverse=False) | |
last_history = sorted_history[-self.config.meta_prompts.history_length:] | |
history_prompt = '\n'.join([self.eval.sample_to_text(sample, | |
num_errors_per_label=self.config.meta_prompts.num_err_prompt, | |
is_score=True) for sample in last_history]) | |
prompt_input = {"history": history_prompt, "task_description": self.task_description, | |
'error_analysis': last_history[-1]['analysis']} | |
if 'label_schema' in self.config.dataset.keys(): | |
prompt_input["labels"] = json.dumps(self.config.dataset.label_schema) | |
prompt_suggestion = self.meta_chain.step_prompt_chain.invoke(prompt_input) | |
self.log_and_print(f'Previous prompt score:\n{self.eval.mean_score}\n#########\n') | |
self.log_and_print(f'Get new prompt:\n{prompt_suggestion["prompt"]}') | |
self.batch_id += 1 | |
if len(self.dataset) < self.config.dataset.max_samples: | |
batch_input = {"num_samples": self.config.meta_prompts.samples_generation_batch, | |
"task_description": self.task_description, | |
"prompt": prompt_suggestion['prompt']} | |
batch_inputs = self.generate_samples_batch(batch_input, self.config.meta_prompts.num_generated_samples, | |
self.config.meta_prompts.samples_generation_batch) | |
if sum([len(t['errors']) for t in last_history]) > 0: | |
history_samples = '\n'.join([self.eval.sample_to_text(sample, | |
num_errors_per_label=self.config.meta_prompts.num_err_samples, | |
is_score=False) for sample in last_history]) | |
for batch in batch_inputs: | |
extra_samples = self.dataset.sample_records() | |
extra_samples_text = DatasetBase.samples_to_text(extra_samples) | |
batch['history'] = history_samples | |
batch['extra_samples'] = extra_samples_text | |
else: | |
for batch in batch_inputs: | |
extra_samples = self.dataset.sample_records() | |
extra_samples_text = DatasetBase.samples_to_text(extra_samples) | |
batch['history'] = 'No previous errors information' | |
batch['extra_samples'] = extra_samples_text | |
samples_batches = self.meta_chain.step_samples.batch_invoke(batch_inputs, | |
self.config.meta_prompts.num_workers) | |
new_samples = [element for sublist in samples_batches for element in sublist['samples']] | |
new_samples = self.dataset.remove_duplicates(new_samples) | |
self.dataset.add(new_samples, self.batch_id) | |
logging.info('Get new samples') | |
self.cur_prompt = prompt_suggestion['prompt'] | |
def stop_criteria(self): | |
""" | |
Check if the stop criteria holds. The conditions for stopping: | |
1. Usage is above the threshold | |
2. There was no improvement in the last > patient steps | |
""" | |
if 0 < self.config.stop_criteria.max_usage < self.calc_usage(): | |
return True | |
if len(self.eval.history) <= self.config.meta_prompts.warmup: | |
self.patient = 0 | |
return False | |
min_batch_id, max_score = self.eval.get_max_score(self.config.meta_prompts.warmup-1) | |
if max_score - self.eval.history[-1]['score'] > -self.config.stop_criteria.min_delta: | |
self.patient += 1 | |
else: | |
self.patient = 0 | |
if self.patient > self.config.stop_criteria.patience: | |
return True | |
return False | |
def generate_samples_batch(batch_input, num_samples, batch_size): | |
""" | |
Generate samples in batch | |
""" | |
batch_num = num_samples // batch_size | |
all_batches = [batch_input.copy() for _ in range(batch_num)] | |
reminder = num_samples - batch_num * batch_size | |
if reminder > 0: | |
all_batches.append(batch_input.copy()) | |
all_batches[-1]['num_samples'] = reminder | |
return all_batches | |
def generate_initial_samples(self): | |
""" | |
In case the initial dataset is empty generate the initial samples | |
""" | |
batch_input = {"num_samples": self.config.meta_prompts.samples_generation_batch, | |
"task_description": self.task_description, | |
"instruction": self.cur_prompt} | |
batch_inputs = self.generate_samples_batch(batch_input, self.config.meta_prompts.num_initialize_samples, | |
self.config.meta_prompts.samples_generation_batch) | |
samples_batches = self.meta_chain.initial_chain.batch_invoke(batch_inputs, self.config.meta_prompts.num_workers) | |
samples_list = [element for sublist in samples_batches for element in sublist['samples']] | |
samples_list = self.dataset.remove_duplicates(samples_list) | |
self.dataset.add(samples_list, 0) | |
def save_state(self): | |
""" | |
Save the process state | |
""" | |
if self.output_path is None: | |
return | |
logging.info('Save state') | |
self.dataset.save_dataset(self.output_path / 'dataset.csv') | |
state = {'history': self.eval.history, 'batch_id': self.batch_id, | |
'prompt': self.cur_prompt, 'task_description': self.task_description, | |
'patient': self.patient} | |
pickle.dump(state, open(self.output_path / 'history.pkl', 'wb')) | |
def load_state(self, path: str): | |
""" | |
Load pretrain state | |
""" | |
path = Path(path) | |
if (path / 'dataset.csv').is_file(): | |
self.dataset.load_dataset(path / 'dataset.csv') | |
if (path / 'history.pkl').is_file(): | |
state = pickle.load(open(path / 'history.pkl', 'rb')) | |
self.eval.history = state['history'] | |
self.batch_id = state['batch_id'] | |
self.cur_prompt = state['prompt'] | |
self.task_description = state['task_description'] | |
self.patient = state['patient'] | |
def step(self, current_iter, total_iter): | |
""" | |
This is the main optimization process step. | |
""" | |
self.log_and_print(f'Starting step {self.batch_id}') | |
if len(self.dataset.records) == 0: | |
self.log_and_print('Dataset is empty generating initial samples') | |
self.generate_initial_samples() | |
if self.config.use_wandb: | |
cur_batch = self.dataset.get_leq(self.batch_id) | |
random_subset = cur_batch.sample(n=min(10, len(cur_batch)))[['text']] | |
self.wandb_run.log( | |
{"Prompt": wandb.Html(f"<p>{self.cur_prompt}</p>"), "Samples": wandb.Table(dataframe=random_subset)}, | |
step=self.batch_id) | |
logging.info('Running annotator') | |
records = self.annotator.apply(self.dataset, self.batch_id) | |
self.dataset.update(records) | |
self.predictor.cur_instruct = self.cur_prompt | |
logging.info('Running Predictor') | |
records = self.predictor.apply(self.dataset, self.batch_id, leq=True) | |
self.dataset.update(records) | |
self.eval.dataset = self.dataset.get_leq(self.batch_id) | |
self.eval.eval_score() | |
logging.info('Calculating Score') | |
large_errors = self.eval.extract_errors() | |
self.eval.add_history(self.cur_prompt, self.task_description) | |
if self.config.use_wandb: | |
large_errors = large_errors.sample(n=min(6, len(large_errors))) | |
correct_samples = self.eval.extract_correct() | |
correct_samples = correct_samples.sample(n=min(6, len(correct_samples))) | |
vis_data = pd.concat([large_errors, correct_samples]) | |
self.wandb_run.log({"score": self.eval.history[-1]['score'], | |
"prediction_result": wandb.Table(dataframe=vis_data), | |
'Total usage': self.calc_usage()}, step=self.batch_id) | |
if self.stop_criteria(): | |
self.log_and_print('Stop criteria reached') | |
return True | |
if current_iter != total_iter-1: | |
self.run_step_prompt() | |
self.save_state() | |
return False | |
def run_pipeline(self, num_steps: int): | |
# Run the optimization pipeline for num_steps | |
num_steps_remaining = num_steps - self.batch_id | |
for i in range(num_steps_remaining): | |
stop_criteria = self.step(i, num_steps_remaining) | |
if stop_criteria: | |
break | |
final_result = self.extract_best_prompt() | |
return final_result | |