Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters. | |
# Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16 | |
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py | |
import math | |
from typing import Literal | |
import fire | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq | |
from llamafactory.data import get_dataset | |
from llamafactory.extras.constants import IGNORE_INDEX | |
from llamafactory.hparams import get_train_args | |
from llamafactory.model import load_tokenizer | |
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models | |
BASE_BS = 4_000_000 # from llama paper | |
def calculate_lr( | |
model_name_or_path: str, | |
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size) | |
stage: Literal["pt", "sft"] = "sft", | |
dataset: str = "alpaca_en", | |
dataset_dir: str = "data", | |
template: str = "default", | |
cutoff_len: int = 1024, # i.e. maximum input length during training | |
is_mistral: bool = False, # mistral model uses a smaller learning rate, | |
): | |
model_args, data_args, training_args, _, _ = get_train_args( | |
dict( | |
stage=stage, | |
model_name_or_path=model_name_or_path, | |
dataset=dataset, | |
dataset_dir=dataset_dir, | |
template=template, | |
cutoff_len=cutoff_len, | |
output_dir="dummy_dir", | |
overwrite_cache=True, | |
) | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module) | |
if stage == "pt": | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
elif stage == "sft": | |
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) | |
else: | |
raise NotImplementedError | |
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True) | |
valid_tokens, total_tokens = 0, 0 | |
for batch in tqdm(dataloader): | |
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item() | |
total_tokens += torch.numel(batch["labels"]) | |
batch_max_len = cutoff_len * batch_size # max tokens in a batch | |
valid_ratio = valid_tokens / total_tokens | |
batch_valid_len = batch_max_len * valid_ratio | |
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size) | |
lr = lr / 6.0 if is_mistral else lr | |
print( | |
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format( | |
lr, valid_ratio * 100, batch_valid_len | |
) | |
) | |
if __name__ == "__main__": | |
fire.Fire(calculate_lr) | |