Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models. | |
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 | |
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py | |
import json | |
import os | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Optional | |
import fire | |
import torch | |
from safetensors.torch import save_file | |
from tqdm import tqdm | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
from transformers.modeling_utils import ( | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFE_WEIGHTS_NAME, | |
WEIGHTS_INDEX_NAME, | |
WEIGHTS_NAME, | |
shard_checkpoint, | |
) | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig, PreTrainedModel | |
def change_name(name: str, old_index: int, new_index: int) -> str: | |
return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index)) | |
def block_expansion( | |
model_name_or_path: str, | |
output_dir: str, | |
num_expand: int, | |
shard_size: Optional[str] = "2GB", | |
save_safetensors: Optional[bool] = False, | |
): | |
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) | |
num_layers = getattr(config, "num_hidden_layers") | |
setattr(config, "num_hidden_layers", num_layers + num_expand) | |
config.save_pretrained(output_dir) | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
tokenizer.save_pretrained(output_dir) | |
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one | |
if save_safetensors: | |
setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights | |
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, | |
config=config, | |
torch_dtype="auto", | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
) | |
state_dict = model.state_dict() | |
if num_layers % num_expand != 0: | |
raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand)) | |
split = num_layers // num_expand | |
layer_cnt = 0 | |
output_state_dict = OrderedDict() | |
for i in range(num_layers): | |
for key, value in state_dict.items(): | |
if ".{:d}.".format(i) in key: | |
output_state_dict[change_name(key, i, layer_cnt)] = value | |
print("Add layer {} copied from layer {}".format(layer_cnt, i)) | |
layer_cnt += 1 | |
if (i + 1) % split == 0: | |
for key, value in state_dict.items(): | |
if ".{:d}.".format(i) in key: | |
if "down_proj" in key or "o_proj" in key: | |
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) | |
else: | |
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) | |
print("Add layer {} expanded from layer {}".format(layer_cnt, i)) | |
layer_cnt += 1 | |
for key, value in state_dict.items(): | |
if key not in output_state_dict: | |
output_state_dict[key] = value | |
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name) | |
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): | |
if save_safetensors: | |
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
else: | |
torch.save(shard, os.path.join(output_dir, shard_file)) | |
if index is None: | |
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name))) | |
else: | |
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
json.dump(index, f, indent=2, sort_keys=True) | |
print("Model weights saved in {}".format(output_dir)) | |
print("Fine-tune this model with:") | |
print(" --model_name_or_path {} \\".format(output_dir)) | |
print(" --finetuning_type freeze \\") | |
print(" --freeze_trainable_layers {} \\".format(num_expand)) | |
print(" --use_llama_pro") | |
if __name__ == "__main__": | |
fire.Fire(block_expansion) | |