kenken999's picture
dfa
e1aa577
import yaml
from easydict import EasyDict as edict
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOpenAI
from pathlib import Path
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.chat_models import AzureChatOpenAI
from langchain.chains import LLMChain
import logging
LLM_ENV = yaml.safe_load(open('config/llm_env.yml', 'r'))
class Color:
RED = '\033[91m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
BLUE = '\033[94m'
END = '\033[0m' # Reset to default color
def get_llm(config: dict):
"""
Returns the LLM model
:param config: dictionary with the configuration
:return: The llm model
"""
if 'temperature' not in config:
temperature = 0
else:
temperature = config['temperature']
if 'model_kwargs' in config:
model_kwargs = config['model_kwargs']
else:
model_kwargs = {}
if config['type'] == 'OpenAI':
if LLM_ENV['openai']['OPENAI_ORGANIZATION'] == '':
return ChatOpenAI(temperature=temperature, model_name=config['name'],
openai_api_key=config.get('openai_api_key', LLM_ENV['openai']['OPENAI_API_KEY']),
openai_api_base=config.get('openai_api_base', LLM_ENV['openai']['OPENAI_API_BASE']),
model_kwargs=model_kwargs)
else:
return ChatOpenAI(temperature=temperature, model_name=config['name'],
openai_api_key=config.get('openai_api_key', LLM_ENV['openai']['OPENAI_API_KEY']),
openai_api_base=config.get('openai_api_base', 'https://api.openai.com/v1'),
openai_organization=config.get('openai_organization', LLM_ENV['openai']['OPENAI_ORGANIZATION']),
model_kwargs=model_kwargs)
elif config['type'] == 'Azure':
return AzureChatOpenAI(temperature=temperature, azure_deployment=config['name'],
openai_api_key=config.get('openai_api_key', LLM_ENV['azure']['AZURE_OPENAI_API_KEY']),
azure_endpoint=config.get('azure_endpoint', LLM_ENV['azure']['AZURE_OPENAI_ENDPOINT']),
openai_api_version=config.get('openai_api_version', LLM_ENV['azure']['OPENAI_API_VERSION']))
elif config['type'] == 'Google':
from langchain_google_genai import ChatGoogleGenerativeAI
return ChatGoogleGenerativeAI(temperature=temperature, model=config['name'],
google_api_key=LLM_ENV['google']['GOOGLE_API_KEY'],
model_kwargs=model_kwargs)
elif config['type'] == 'HuggingFacePipeline':
device = config.get('gpu_device', -1)
device_map = config.get('device_map', None)
return HuggingFacePipeline.from_model_id(
model_id=config['name'],
task="text-generation",
pipeline_kwargs={"max_new_tokens": config['max_new_tokens']},
device=device,
device_map=device_map
)
else:
raise NotImplementedError("LLM not implemented")
def load_yaml(yaml_path: str, as_edict: bool = True) -> edict:
"""
Reads the yaml file and enrich it with more vales.
:param yaml_path: The path to the yaml file
:param as_edict: If True, returns an EasyDict configuration
:return: An EasyDict configuration
"""
with open(yaml_path, 'r') as file:
yaml_data = yaml.safe_load(file)
if 'meta_prompts' in yaml_data.keys() and 'folder' in yaml_data['meta_prompts']:
yaml_data['meta_prompts']['folder'] = Path(yaml_data['meta_prompts']['folder'])
if as_edict:
yaml_data = edict(yaml_data)
return yaml_data
def load_prompt(prompt_path: str) -> PromptTemplate:
"""
Reads and returns the contents of a prompt file.
:param prompt_path: The path to the prompt file
"""
with open(prompt_path, 'r') as file:
prompt = file.read().rstrip()
return PromptTemplate.from_template(prompt)
def validate_generation_config(base_config, generation_config):
if "annotator" not in generation_config:
raise Exception("Generation config must contain an empty annotator.")
if "label_schema" not in generation_config.dataset or \
base_config.dataset.label_schema != generation_config.dataset.label_schema:
raise Exception("Generation label schema must match the basic config.")
def modify_input_for_ranker(config, task_description, initial_prompt):
modifiers_config = yaml.safe_load(open('prompts/modifiers/modifiers.yml', 'r'))
task_desc_setup = load_prompt(modifiers_config['ranker']['task_desc_mod'])
init_prompt_setup = load_prompt(modifiers_config['ranker']['prompt_mod'])
llm = get_llm(config.llm)
task_llm_chain = LLMChain(llm=llm, prompt=task_desc_setup)
task_result = task_llm_chain(
{"task_description": task_description})
mod_task_desc = task_result['text']
logging.info(f"Task description modified for ranking to: \n{mod_task_desc}")
prompt_llm_chain = LLMChain(llm=llm, prompt=init_prompt_setup)
prompt_result = prompt_llm_chain({"prompt": initial_prompt, 'label_schema': config.dataset.label_schema})
mod_prompt = prompt_result['text']
logging.info(f"Initial prompt modified for ranking to: \n{mod_prompt}")
return mod_prompt, mod_task_desc
def override_config(override_config_file, config_file='config/config_default.yml'):
"""
Override the default configuration file with the override configuration file
:param config_file: The default configuration file
:param override_config_file: The override configuration file
"""
def override_dict(config_dict, override_config_dict):
for key, value in override_config_dict.items():
if isinstance(value, dict):
if key not in config_dict:
config_dict[key] = value
else:
override_dict(config_dict[key], value)
else:
config_dict[key] = value
return config_dict
default_config_dict = load_yaml(config_file, as_edict=False)
override_config_dict = load_yaml(override_config_file, as_edict=False)
config_dict = override_dict(default_config_dict, override_config_dict)
return edict(config_dict)