Spaces:
Runtime error
Runtime error
File size: 5,436 Bytes
ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a a51b6ba ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a 0e03d4b ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a cfb8b3f ef7759a 7f94470 53934f0 7f94470 ef7759a 7f279e5 ef7759a 0e03d4b ef7759a 7f279e5 ef7759a 5ce4e35 ef7759a 7f279e5 ef7759a 5ce4e35 ef7759a 9c9418f ef7759a 7f94470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import pandas as pd
import numpy as np
from zipfile import ZipFile
import tensorflow as tf
from tensorflow import keras
from pathlib import Path
import matplotlib.pyplot as plt
import gradio as gr
from huggingface_hub import from_pretrained_keras
# Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
movielens_data_file_url = "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
movielens_zipped_file = keras.utils.get_file("ml-latest-small.zip", movielens_data_file_url, extract=False)
keras_datasets_path = Path(movielens_zipped_file).parents[0]
movielens_dir = keras_datasets_path / "ml-latest-small"
# Only extract the data the first time the script is run.
if not movielens_dir.exists():
with ZipFile(movielens_zipped_file, "r") as zip:
# Extract files
print("Extracting all the files now...")
zip.extractall(path=keras_datasets_path)
print("Done!")
# Get the ratings file
ratings_file = movielens_dir / "ratings.csv"
df = pd.read_csv(ratings_file)
# Make the encodings for users
user_ids = df["userId"].unique().tolist()
user2user_encoded = {x: i for i, x in enumerate(user_ids)}
user_encoded2user = {i: x for i, x in enumerate(user_ids)}
df["user"] = df["userId"].map(user2user_encoded)
num_users = len(user2user_encoded)
# Make the encodings for movies
movie_ids = df["movieId"].unique().tolist()
movie2movie_encoded = {x: i for i, x in enumerate(movie_ids)}
movie_encoded2movie = {i: x for i, x in enumerate(movie_ids)}
df["movie"] = df["movieId"].map(movie2movie_encoded)
num_movies = len(movie_encoded2movie)
# Set ratings type
df["rating"] = df["rating"].values.astype(np.float32)
# min and max ratings will be used to normalize the ratings later
# min_rating = min(df["rating"])
# max_rating = max(df["rating"])
# Load model
model = from_pretrained_keras('keras-io/collaborative-filtering-movielens')
movie_df = pd.read_csv(movielens_dir / "movies.csv")
def update_user(id):
return get_top_rated_movies_from_user(id), get_recommendations(id)
def get_top_rated_movies_from_user(id):
decoded_id = user_encoded2user.get(id)
# Get the top rated movies by this user
movies_watched_by_user = df[df.userId == decoded_id]
top_movies_user = (
movies_watched_by_user.sort_values(by="rating", ascending=False)
.head(5)
.movieId.values
)
movie_df_rows = movie_df[movie_df["movieId"].isin(top_movies_user)]
movie_df_rows = movie_df_rows.drop('movieId', axis=1)
return movie_df_rows
def random_user():
return update_user(np.random.randint(0, num_users-1))
def get_recommendations(id):
decoded_id = user_encoded2user.get(id)
# Get the top 10 recommended movies for this user
movies_watched_by_user = df[df.userId == decoded_id]
movies_not_watched = movie_df[
~movie_df["movieId"].isin(movies_watched_by_user.movieId.values)
]["movieId"]
movies_not_watched = list(
set(movies_not_watched).intersection(set(movie2movie_encoded.keys()))
)
movies_not_watched = [[movie2movie_encoded.get(x)] for x in movies_not_watched]
# Encoded user id
encoded_id = id
# Create data [[user_id, movie_id],...]
user_movie_array = np.hstack(
([[encoded_id]] * len(movies_not_watched), movies_not_watched)
)
# Predict ratings for movies not watched
ratings = model.predict(user_movie_array).flatten()
# Get indices of top ten movies
top_ratings_indices = ratings.argsort()[-10:][::-1]
# Decode each movie
recommended_movie_ids = [
movie_encoded2movie.get(movies_not_watched[x][0]) for x in top_ratings_indices
]
recommended_movies = movie_df[movie_df["movieId"].isin(recommended_movie_ids)]
recommended_movies = recommended_movies.drop('movieId', axis=1)
return recommended_movies
demo = gr.Blocks()
with demo:
gr.Markdown("""
<div>
<h1 style='text-align: center'>Movie Recommender</h1>
Collaborative Filtering is used to predict the top 10 recommended movies for a particular user from the dataset based on that user and previous movies they have rated.
Note: Currently there is a bug with sliders. If you "click and drag" on the slider it will not use the correct user. Please only "click" on the slider :D.
</div>
""")
with gr.Box():
gr.Markdown(
"""
### Input
#### Select a user to get recommendations for.
""")
inp1 = gr.Slider(0, num_users-1, value=0, label='User')
# btn1 = gr.Button('Random User')
# top_rated_from_user = get_top_rated_from_user(0)
gr.Markdown(
"""
<br>
""")
gr.Markdown(
"""
#### Movies with the Highest Ratings from this user
""")
df1 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
with gr.Box():
# recommendations = get_recommendations(0)
gr.Markdown(
"""
### Output
#### Top 10 movie recommendations
""")
df2 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
gr.Markdown("""
<p style='text-align: center'>
<a href='https://keras.io/examples/structured_data/collaborative_filtering_movielens/' target='_blank' style='text-decoration: underline'>Keras Example by Siddhartha Banerjee</a>
<br>
Space by Scott Krstyen (mindwrapped)
</p>
""")
inp1.change(fn=update_user,
inputs=inp1,
outputs=[df1, df2])
demo.launch(debug=True) |