Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
from tensorflow import keras | |
from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("Harveenchadha/low-light-image-enhancement", compile=False) | |
#examples = ['examples/179.png', 'examples/493.png', 'examples/780.png'] | |
def get_enhanced_image(data, output): | |
r1 = output[:, :, :, :3] | |
r2 = output[:, :, :, 3:6] | |
r3 = output[:, :, :, 6:9] | |
r4 = output[:, :, :, 9:12] | |
r5 = output[:, :, :, 12:15] | |
r6 = output[:, :, :, 15:18] | |
r7 = output[:, :, :, 18:21] | |
r8 = output[:, :, :, 21:24] | |
x = data + r1 * (tf.square(data) - data) | |
x = x + r2 * (tf.square(x) - x) | |
x = x + r3 * (tf.square(x) - x) | |
enhanced_image = x + r4 * (tf.square(x) - x) | |
x = enhanced_image + r5 * (tf.square(enhanced_image) - enhanced_image) | |
x = x + r6 * (tf.square(x) - x) | |
x = x + r7 * (tf.square(x) - x) | |
enhanced_image = x + r8 * (tf.square(x) - x) | |
return enhanced_image | |
def infer(original_image): | |
image = keras.preprocessing.image.img_to_array(original_image) | |
image = image.astype("float32") / 255.0 | |
image = np.expand_dims(image, axis=0) | |
output = model.predict(image) | |
output = get_enhanced_image(image, output) | |
output_image = tf.cast((output[0, :, :, :] * 255), dtype=np.uint8) | |
output_image = Image.fromarray(output_image.numpy()) | |
# output_image = output_image.numpy() | |
# print(output_image.shape()) | |
return output_image | |
iface = gr.Interface( | |
fn=infer, | |
title="Low Light Image Enhancement", | |
description = "Keras Implementation of MIRNet model for light up the dark image ππ", | |
inputs=[gr.inputs.Image(label="image", type="pil")], | |
outputs=[gr.outputs.Image(label="image", type="numpy")], | |
#examples=examples, | |
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/vision/mirnet/\">Soumik Rakshit</a>", | |
).launch(debug=True) |