File size: 22,430 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Load pipelines, models, and schedulers

[[open-in-colab]]

Having an easy way to use a diffusion system for inference is essential to 🧨 Diffusers. Diffusion systems often consist of multiple components like parameterized models, tokenizers, and schedulers that interact in complex ways. That is why we designed the [`DiffusionPipeline`] to wrap the complexity of the entire diffusion system into an easy-to-use API, while remaining flexible enough to be adapted for other use cases, such as loading each component individually as building blocks to assemble your own diffusion system.

Everything you need for inference or training is accessible with the `from_pretrained()` method.

This guide will show you how to load:

- pipelines from the Hub and locally
- different components into a pipeline
- checkpoint variants such as different floating point types or non-exponential mean averaged (EMA) weights
- models and schedulers

## Diffusion Pipeline

<Tip>

πŸ’‘ Skip to the [DiffusionPipeline explained](#diffusionpipeline-explained) section if you are interested in learning in more detail about how the [`DiffusionPipeline`] class works.

</Tip>

The [`DiffusionPipeline`] class is the simplest and most generic way to load the latest trending diffusion model from the [Hub](https://huggingface.co/models?library=diffusers&sort=trending). The [`DiffusionPipeline.from_pretrained`] method automatically detects the correct pipeline class from the checkpoint, downloads, and caches all the required configuration and weight files, and returns a pipeline instance ready for inference.

```python
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```

You can also load a checkpoint with its specific pipeline class. The example above loaded a Stable Diffusion model; to get the same result, use the [`StableDiffusionPipeline`] class:

```python
from diffusers import StableDiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```

A checkpoint (such as [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) or [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) may also be used for more than one task, like text-to-image or image-to-image. To differentiate what task you want to use the checkpoint for, you have to load it directly with its corresponding task-specific pipeline class:

```python
from diffusers import StableDiffusionImg2ImgPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id)
```

### Local pipeline

To load a diffusion pipeline locally, use [`git-lfs`](https://git-lfs.github.com/) to manually download the checkpoint (in this case, [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) to your local disk. This creates a local folder, `./stable-diffusion-v1-5`, on your disk:

```bash
git-lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```

Then pass the local path to [`~DiffusionPipeline.from_pretrained`]:

```python
from diffusers import DiffusionPipeline

repo_id = "./stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```

The [`~DiffusionPipeline.from_pretrained`] method won't download any files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.

### Swap components in a pipeline

You can customize the default components of any pipeline with another compatible component. Customization is important because:

- Changing the scheduler is important for exploring the trade-off between generation speed and quality.
- Different components of a model are typically trained independently and you can swap out a component with a better-performing one.
- During finetuning, usually only some components - like the UNet or text encoder - are trained.

To find out which schedulers are compatible for customization, you can use the `compatibles` method:

```py
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
stable_diffusion.scheduler.compatibles
```

Let's use the [`SchedulerMixin.from_pretrained`] method to replace the default [`PNDMScheduler`] with a more performant scheduler, [`EulerDiscreteScheduler`]. The `subfolder="scheduler"` argument is required to load the scheduler configuration from the correct [subfolder](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/scheduler) of the pipeline repository.

Then you can pass the new [`EulerDiscreteScheduler`] instance to the `scheduler` argument in [`DiffusionPipeline`]:

```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler, use_safetensors=True)
```

### Safety checker

Diffusion models like Stable Diffusion can generate harmful content, which is why 🧨 Diffusers has a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) to check generated outputs against known hardcoded NSFW content. If you'd like to disable the safety checker for whatever reason, pass `None` to the `safety_checker` argument:

```python
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None, use_safetensors=True)
"""
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide by the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend keeping the safety filter enabled in all public-facing circumstances, disabling it only for use cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
"""
```

### Reuse components across pipelines

You can also reuse the same components in multiple pipelines to avoid loading the weights into RAM twice. Use the [`~DiffusionPipeline.components`] method to save the components:

```python
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)

components = stable_diffusion_txt2img.components
```

Then you can pass the `components` to another pipeline without reloading the weights into RAM:

```py
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(**components)
```

You can also pass the components individually to the pipeline if you want more flexibility over which components to reuse or disable. For example, to reuse the same components in the text-to-image pipeline, except for the safety checker and feature extractor, in the image-to-image pipeline:

```py
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
    vae=stable_diffusion_txt2img.vae,
    text_encoder=stable_diffusion_txt2img.text_encoder,
    tokenizer=stable_diffusion_txt2img.tokenizer,
    unet=stable_diffusion_txt2img.unet,
    scheduler=stable_diffusion_txt2img.scheduler,
    safety_checker=None,
    feature_extractor=None,
    requires_safety_checker=False,
)
```

## Checkpoint variants

A checkpoint variant is usually a checkpoint whose weights are:

- Stored in a different floating point type for lower precision and lower storage, such as [`torch.float16`](https://pytorch.org/docs/stable/tensors.html#data-types), because it only requires half the bandwidth and storage to download. You can't use this variant if you're continuing training or using a CPU.
- Non-exponential mean averaged (EMA) weights, which shouldn't be used for inference. You should use these to continue fine-tuning a model.

<Tip>

πŸ’‘ When the checkpoints have identical model structures, but they were trained on different datasets and with a different training setup, they should be stored in separate repositories instead of variations (for example, [`stable-diffusion-v1-4`] and [`stable-diffusion-v1-5`]).

</Tip>

Otherwise, a variant is **identical** to the original checkpoint. They have exactly the same serialization format (like [Safetensors](./using_safetensors)), model structure, and weights that have identical tensor shapes.

| **checkpoint type** | **weight name**                     | **argument for loading weights** |
|---------------------|-------------------------------------|----------------------------------|
| original            | diffusion_pytorch_model.bin         |                                  |
| floating point      | diffusion_pytorch_model.fp16.bin    | `variant`, `torch_dtype`         |
| non-EMA             | diffusion_pytorch_model.non_ema.bin | `variant`                        |

There are two important arguments to know for loading variants:

- `torch_dtype` defines the floating point precision of the loaded checkpoints. For example, if you want to save bandwidth by loading a `fp16` variant, you should specify `torch_dtype=torch.float16` to *convert the weights* to `fp16`. Otherwise, the `fp16` weights are converted to the default `fp32` precision. You can also load the original checkpoint without defining the `variant` argument, and convert it to `fp16` with `torch_dtype=torch.float16`. In this case, the default `fp32` weights are downloaded first, and then they're converted to `fp16` after loading.

- `variant` defines which files should be loaded from the repository. For example, if you want to load a `non_ema` variant from the [`diffusers/stable-diffusion-variants`](https://huggingface.co/diffusers/stable-diffusion-variants/tree/main/unet) repository, you should specify `variant="non_ema"` to download the `non_ema` files.

```python
from diffusers import DiffusionPipeline
import torch

# load fp16 variant
stable_diffusion = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
# load non_ema variant
stable_diffusion = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True
)
```

To save a checkpoint stored in a different floating-point type or as a non-EMA variant, use the [`DiffusionPipeline.save_pretrained`] method and specify the `variant` argument. You should try and save a variant to the same folder as the original checkpoint, so you can load both from the same folder:

```python
from diffusers import DiffusionPipeline

# save as fp16 variant
stable_diffusion.save_pretrained("runwayml/stable-diffusion-v1-5", variant="fp16")
# save as non-ema variant
stable_diffusion.save_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema")
```

If you don't save the variant to an existing folder, you must specify the `variant` argument otherwise it'll throw an `Exception` because it can't find the original checkpoint:

```python
# πŸ‘Ž this won't work
stable_diffusion = DiffusionPipeline.from_pretrained(
    "./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
# πŸ‘ this works
stable_diffusion = DiffusionPipeline.from_pretrained(
    "./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```

<!--
TODO(Patrick) - Make sure to uncomment this part as soon as things are deprecated.

#### Using `revision` to load pipeline variants is deprecated

Previously the `revision` argument of [`DiffusionPipeline.from_pretrained`] was heavily used to
load model variants, e.g.:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", use_safetensors=True)
```

However, this behavior is now deprecated since the "revision" argument should (just as it's done in GitHub) better be used to load model checkpoints from a specific commit or branch in development.

The above example is therefore deprecated and won't be supported anymore for `diffusers >= 1.0.0`.

<Tip warning={true}>

If you load diffusers pipelines or models with `revision="fp16"` or `revision="non_ema"`,
please make sure to update the code and use `variant="fp16"` or `variation="non_ema"` respectively
instead.

</Tip>
-->

## Models

Models are loaded from the [`ModelMixin.from_pretrained`] method, which downloads and caches the latest version of the model weights and configurations. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache instead of re-downloading them.

Models can be loaded from a subfolder with the `subfolder` argument. For example, the model weights for `runwayml/stable-diffusion-v1-5` are stored in the [`unet`](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/unet) subfolder:

```python
from diffusers import UNet2DConditionModel

repo_id = "runwayml/stable-diffusion-v1-5"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet", use_safetensors=True)
```

Or directly from a repository's [directory](https://huggingface.co/google/ddpm-cifar10-32/tree/main):

```python
from diffusers import UNet2DModel

repo_id = "google/ddpm-cifar10-32"
model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
```

You can also load and save model variants by specifying the `variant` argument in [`ModelMixin.from_pretrained`] and [`ModelMixin.save_pretrained`]:

```python
from diffusers import UNet2DConditionModel

model = UNet2DConditionModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non_ema", use_safetensors=True
)
model.save_pretrained("./local-unet", variant="non_ema")
```

## Schedulers

Schedulers are loaded from the [`SchedulerMixin.from_pretrained`] method, and unlike models, schedulers are **not parameterized** or **trained**; they are defined by a configuration file.

Loading schedulers does not consume any significant amount of memory and the same configuration file can be used for a variety of different schedulers.
For example, the following schedulers are compatible with [`StableDiffusionPipeline`], which means you can load the same scheduler configuration file in any of these classes:

```python
from diffusers import StableDiffusionPipeline
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    DPMSolverMultistepScheduler,
)

repo_id = "runwayml/stable-diffusion-v1-5"

ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")

# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler_anc`, `euler`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm, use_safetensors=True)
```

## DiffusionPipeline explained

As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things:

- Download the latest version of the folder structure required for inference and cache it. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] reuses the cache and won't redownload the files.
- Load the cached weights into the correct pipeline [class](../api/pipelines/overview#diffusers-summary) - retrieved from the `model_index.json` file - and return an instance of it.

The pipelines' underlying folder structure corresponds directly with their class instances. For example, the [`StableDiffusionPipeline`] corresponds to the folder structure in [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5).

```python
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
print(pipeline)
```

You'll see pipeline is an instance of [`StableDiffusionPipeline`], which consists of seven components:

- `"feature_extractor"`: a [`~transformers.CLIPImageProcessor`] from πŸ€— Transformers.
- `"safety_checker"`: a [component](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32) for screening against harmful content.
- `"scheduler"`: an instance of [`PNDMScheduler`].
- `"text_encoder"`: a [`~transformers.CLIPTextModel`] from πŸ€— Transformers.
- `"tokenizer"`: a [`~transformers.CLIPTokenizer`] from πŸ€— Transformers.
- `"unet"`: an instance of [`UNet2DConditionModel`].
- `"vae"`: an instance of [`AutoencoderKL`].

```json
StableDiffusionPipeline {
  "feature_extractor": [
    "transformers",
    "CLIPImageProcessor"
  ],
  "safety_checker": [
    "stable_diffusion",
    "StableDiffusionSafetyChecker"
  ],
  "scheduler": [
    "diffusers",
    "PNDMScheduler"
  ],
  "text_encoder": [
    "transformers",
    "CLIPTextModel"
  ],
  "tokenizer": [
    "transformers",
    "CLIPTokenizer"
  ],
  "unet": [
    "diffusers",
    "UNet2DConditionModel"
  ],
  "vae": [
    "diffusers",
    "AutoencoderKL"
  ]
}
```

Compare the components of the pipeline instance to the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main) folder structure, and you'll see there is a separate folder for each of the components in the repository:

```
.
β”œβ”€β”€ feature_extractor
β”‚Β Β  └── preprocessor_config.json
β”œβ”€β”€ model_index.json
β”œβ”€β”€ safety_checker
β”‚Β Β  β”œβ”€β”€ config.json
|   β”œβ”€β”€ model.fp16.safetensors
β”‚   β”œβ”€β”€ model.safetensors
β”‚   β”œβ”€β”€ pytorch_model.bin
|   └── pytorch_model.fp16.bin
β”œβ”€β”€ scheduler
β”‚Β Β  └── scheduler_config.json
β”œβ”€β”€ text_encoder
β”‚Β Β  β”œβ”€β”€ config.json
|   β”œβ”€β”€ model.fp16.safetensors
β”‚   β”œβ”€β”€ model.safetensors
β”‚   |── pytorch_model.bin
|   └── pytorch_model.fp16.bin
β”œβ”€β”€ tokenizer
β”‚Β Β  β”œβ”€β”€ merges.txt
β”‚Β Β  β”œβ”€β”€ special_tokens_map.json
β”‚Β Β  β”œβ”€β”€ tokenizer_config.json
β”‚Β Β  └── vocab.json
β”œβ”€β”€ unet
β”‚Β Β  β”œβ”€β”€ config.json
β”‚Β Β  β”œβ”€β”€ diffusion_pytorch_model.bin
|   |── diffusion_pytorch_model.fp16.bin
β”‚   |── diffusion_pytorch_model.f16.safetensors
β”‚   |── diffusion_pytorch_model.non_ema.bin
β”‚   |── diffusion_pytorch_model.non_ema.safetensors
β”‚   └── diffusion_pytorch_model.safetensors
|── vae
.   β”œβ”€β”€ config.json
.   β”œβ”€β”€ diffusion_pytorch_model.bin
    β”œβ”€β”€ diffusion_pytorch_model.fp16.bin
    β”œβ”€β”€ diffusion_pytorch_model.fp16.safetensors
    └── diffusion_pytorch_model.safetensors
```

You can access each of the components of the pipeline as an attribute to view its configuration:

```py
pipeline.tokenizer
CLIPTokenizer(
    name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer",
    vocab_size=49408,
    model_max_length=77,
    is_fast=False,
    padding_side="right",
    truncation_side="right",
    special_tokens={
        "bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "pad_token": "<|endoftext|>",
    },
    clean_up_tokenization_spaces=True
)
```

Every pipeline expects a [`model_index.json`](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json) file that tells the [`DiffusionPipeline`]:

- which pipeline class to load from `_class_name`
- which version of 🧨 Diffusers was used to create the model in `_diffusers_version`
- what components from which library are stored in the subfolders (`name` corresponds to the component and subfolder name, `library` corresponds to the name of the library to load the class from, and `class` corresponds to the class name)

```json
{
  "_class_name": "StableDiffusionPipeline",
  "_diffusers_version": "0.6.0",
  "feature_extractor": [
    "transformers",
    "CLIPImageProcessor"
  ],
  "safety_checker": [
    "stable_diffusion",
    "StableDiffusionSafetyChecker"
  ],
  "scheduler": [
    "diffusers",
    "PNDMScheduler"
  ],
  "text_encoder": [
    "transformers",
    "CLIPTextModel"
  ],
  "tokenizer": [
    "transformers",
    "CLIPTokenizer"
  ],
  "unet": [
    "diffusers",
    "UNet2DConditionModel"
  ],
  "vae": [
    "diffusers",
    "AutoencoderKL"
  ]
}
```