File size: 15,368 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
import shutil
import unittest
from collections import OrderedDict
from pathlib import Path

import torch

from diffusers import (
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    AutoPipelineForText2Image,
    ControlNetModel,
    DiffusionPipeline,
)
from diffusers.pipelines.auto_pipeline import (
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
from diffusers.utils.testing_utils import slow


PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
    [
        ("stable-diffusion", "runwayml/stable-diffusion-v1-5"),
        ("if", "DeepFloyd/IF-I-XL-v1.0"),
        ("kandinsky", "kandinsky-community/kandinsky-2-1"),
        ("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
    ]
)


class AutoPipelineFastTest(unittest.TestCase):
    def test_from_pipe_consistent(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )
        original_config = dict(pipe.config)

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

    def test_from_pipe_override(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

        pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

    def test_from_pipe_consistent_sdxl(self):
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
            requires_aesthetics_score=True,
            force_zeros_for_empty_prompt=False,
        )

        original_config = dict(pipe.config)

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        pipe = AutoPipelineForImage2Image.from_pipe(pipe)

        assert dict(pipe.config) == original_config

    def test_kwargs_local_files_only(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-torch"
        tmpdirname = DiffusionPipeline.download(repo)
        tmpdirname = Path(tmpdirname)

        # edit commit_id to so that it's not the latest commit
        commit_id = tmpdirname.name
        new_commit_id = commit_id + "hug"

        ref_dir = tmpdirname.parent.parent / "refs/main"
        with open(ref_dir, "w") as f:
            f.write(new_commit_id)

        new_tmpdirname = tmpdirname.parent / new_commit_id
        os.rename(tmpdirname, new_tmpdirname)

        try:
            AutoPipelineForText2Image.from_pretrained(repo, local_files_only=True)
        except OSError:
            assert False, "not able to load local files"

        shutil.rmtree(tmpdirname.parent.parent)

    def test_from_pipe_controlnet_text2img(self):
        pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionImg2ImgPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_inpaint(self):
        pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_new_task(self):
        pipe_text2img = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=None)
        assert pipe_inpaint.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe_inpaint.components

        # testing `from_pipe` for text2img controlnet
        ## 1. from a different controlnet pipe, without controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 2. from a different controlnet pipe, with controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 3. from same controlnet pipeline class, with a different controlnet component
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        # testing from_pipe for inpainting
        ## 1. from a different controlnet pipeline class
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from a different controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from same controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_inpaint, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        # testing from_pipe from img2img controlnet
        ## from a different controlnet pipe, without controlnet argument
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from a different controlnet pipe, with a different controlnet component
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from same controlnet pipeline class, with a different controlnet
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components


@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
    def test_pipe_auto(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            # test txt2img
            pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_txt2img, pipe_to
            gc.collect()

            # test img2img

            pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_img2img, pipe_to
            gc.collect()

            # test inpaint

            if "kandinsky" not in model_name:
                pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
                    model_repo, variant="fp16", torch_dtype=torch.float16
                )
                self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                del pipe_inpaint, pipe_to
                gc.collect()

    def test_from_pipe_consistent(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            if model_name in ["kandinsky", "kandinsky22"]:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
            else:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]

            # test from_pretrained
            for pipe_from_class in auto_pipes:
                pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
                pipe_from_config = dict(pipe_from.config)

                for pipe_to_class in auto_pipes:
                    pipe_to = pipe_to_class.from_pipe(pipe_from)
                    self.assertEqual(dict(pipe_to.config), pipe_from_config)

                del pipe_from, pipe_to
                gc.collect()

    def test_controlnet(self):
        # test from_pretrained
        model_repo = "runwayml/stable-diffusion-v1-5"
        controlnet_repo = "lllyasviel/sd-controlnet-canny"

        controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)

        pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        # test from_pipe
        for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))

            pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))