File size: 5,824 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = WuerstchenDecoderPipeline
    params = ["prompt"]
    batch_params = ["image_embeddings", "prompt", "negative_prompt"]
    required_optional_params = [
        "num_images_per_prompt",
        "num_inference_steps",
        "latents",
        "negative_prompt",
        "guidance_scale",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False
    callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"]

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            projection_dim=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config).eval()

    @property
    def dummy_vqgan(self):
        torch.manual_seed(0)

        model_kwargs = {
            "bottleneck_blocks": 1,
            "num_vq_embeddings": 2,
        }
        model = PaellaVQModel(**model_kwargs)
        return model.eval()

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
            "c_cond": self.text_embedder_hidden_size,
            "c_hidden": [320],
            "nhead": [-1],
            "blocks": [4],
            "level_config": ["CT"],
            "clip_embd": self.text_embedder_hidden_size,
            "inject_effnet": [False],
        }

        model = WuerstchenDiffNeXt(**model_kwargs)
        return model.eval()

    def get_dummy_components(self):
        decoder = self.dummy_decoder
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        vqgan = self.dummy_vqgan

        scheduler = DDPMWuerstchenScheduler()

        components = {
            "decoder": decoder,
            "vqgan": vqgan,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "latent_dim_scale": 4.0,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image_embeddings": torch.ones((1, 4, 4, 4), device=device),
            "prompt": "horse",
            "generator": generator,
            "guidance_scale": 1.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_wuerstchen_decoder(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-5)

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"
        test_mean_pixel_difference = False

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference,
            test_mean_pixel_difference=test_mean_pixel_difference,
        )

    @unittest.skip(reason="bf16 not supported and requires CUDA")
    def test_float16_inference(self):
        super().test_float16_inference()