Spaces:
No application file
No application file
File size: 5,315 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import torch
import matplotlib.pyplot as plt
import numpy as np
import io
import matplotlib
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import mpl_toolkits.mplot3d.axes3d as p3
from textwrap import wrap
import imageio
def plot_3d_motion(args, figsize=(10, 10), fps=120, radius=4):
matplotlib.use('Agg')
plt.style.use('dark_background')
joints, out_name, title = args #kit(192,22,3)
data = joints.copy().reshape(len(joints), -1, 3)
nb_joints = joints.shape[1]# kit:22 openpose 25
smpl_kinetic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]] if nb_joints == 21 else [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
# 22关键点 [0, 2, 5, 8, 11]表示连接了五个关键点,分别是左脚踝(0号关键点)、左髋部(2号关键点)、左肩部(5号关键点)、左手腕(8号关键点)和左肘部(11号关键点),这五个关键点按照顺序连接起来。
# [0, 11, 12, 13, 14, 15]表示连接了六个关键点,分别是骨盆(0号关键点)、左大腿(11号关键点)、左小腿(12号关键点)、左脚踝(13号关键点)、左脚尖(14号关键点)和左脚掌(15号关键点
limits = 1000 if nb_joints == 21 else 2
MINS = data.min(axis=0).min(axis=0)
MAXS = data.max(axis=0).max(axis=0)
colors = ['red', 'blue', 'black', 'red', 'blue',
'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
frame_number = data.shape[0]
# print(data.shape)
height_offset = MINS[1]
data[:, :, 1] -= height_offset
trajec = data[:, 0, [0, 2]]
data[..., 0] -= data[:, 0:1, 0]
data[..., 2] -= data[:, 0:1, 2]
def update(index):
def init():
ax.set_xlim(-limits, limits)
ax.set_ylim(-limits, limits)
ax.set_zlim(0, limits)
ax.grid(b=False)
def plot_xzPlane(minx, maxx, miny, minz, maxz):
## Plot a plane XZ
verts = [
[minx, miny, minz],
[minx, miny, maxz],
[maxx, miny, maxz],
[maxx, miny, minz]
]
xz_plane = Poly3DCollection([verts])
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
#xz_plane.set_facecolor(())
#ax.add_collection3d(xz_plane)#绘制行走平面
fig = plt.figure(figsize=(480/96., 320/96.), dpi=96) if nb_joints == 21 else plt.figure(figsize=(10, 10), dpi=96)
if title is not None :
wraped_title = '\n'.join(wrap(title, 40))
fig.suptitle(wraped_title, fontsize=16)
ax = p3.Axes3D(fig)
init()
#ax.lines = []
#ax.collections = []
ax.view_init(elev=110, azim=-90)
ax.dist = 7.5
# ax =
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
MAXS[2] - trajec[index, 1])
# ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)
if index > 1:
ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
color='blue')
# ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
for i, (chain, color) in enumerate(zip(smpl_kinetic_chain, colors)):
if i < 5:
linewidth = 4.0
else:
linewidth = 2.0
ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,color=color)#xyz width color
#ax.text(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], str(chain), fontsize = 15)
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
#plt.savefig(f'./smpl_{index}.jpg', dpi=96)
if out_name is not None :
plt.savefig(out_name, dpi=96)
plt.close()
else :
io_buf = io.BytesIO()
fig.savefig(io_buf, format='raw', dpi=96)
io_buf.seek(0)
# print(fig.bbox.bounds)
arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
io_buf.close()
plt.close()
return arr
out = []
for i in range(frame_number) :
out.append(update(i))
out = np.stack(out, axis=0)
return torch.from_numpy(out)
def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None) :
batch_size = len(smpl_joints_batch)
out = []
for i in range(batch_size) :
out.append(plot_3d_motion([smpl_joints_batch[i], None, title_batch[i] if title_batch is not None else None]))
if outname is not None:
imageio.mimsave(outname[i], np.array(out[-1]), duration=1000/20)
out = torch.stack(out, axis=0)
return out
|