File size: 5,315 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch 
import matplotlib.pyplot as plt
import numpy as np
import io
import matplotlib
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import mpl_toolkits.mplot3d.axes3d as p3
from textwrap import wrap
import imageio

def plot_3d_motion(args, figsize=(10, 10), fps=120, radius=4):
    matplotlib.use('Agg')
    
    plt.style.use('dark_background')
    joints, out_name, title = args #kit(192,22,3)
    
    data = joints.copy().reshape(len(joints), -1, 3)
    
    nb_joints = joints.shape[1]# kit:22 openpose 25
    smpl_kinetic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]] if nb_joints == 21 else [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
    # 22关键点 [0, 2, 5, 8, 11]表示连接了五个关键点,分别是左脚踝(0号关键点)、左髋部(2号关键点)、左肩部(5号关键点)、左手腕(8号关键点)和左肘部(11号关键点),这五个关键点按照顺序连接起来。
    # [0, 11, 12, 13, 14, 15]表示连接了六个关键点,分别是骨盆(0号关键点)、左大腿(11号关键点)、左小腿(12号关键点)、左脚踝(13号关键点)、左脚尖(14号关键点)和左脚掌(15号关键点
    limits = 1000 if nb_joints == 21 else 2
    MINS = data.min(axis=0).min(axis=0)
    MAXS = data.max(axis=0).max(axis=0)
    colors = ['red', 'blue', 'black', 'red', 'blue',
              'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
              'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
    frame_number = data.shape[0]
    #     print(data.shape)

    height_offset = MINS[1]
    data[:, :, 1] -= height_offset
    trajec = data[:, 0, [0, 2]]

    data[..., 0] -= data[:, 0:1, 0]
    data[..., 2] -= data[:, 0:1, 2]

    def update(index):

        def init():
            ax.set_xlim(-limits, limits)
            ax.set_ylim(-limits, limits)
            ax.set_zlim(0, limits)
            ax.grid(b=False)
        def plot_xzPlane(minx, maxx, miny, minz, maxz):
            ## Plot a plane XZ
            verts = [
                [minx, miny, minz],
                [minx, miny, maxz],
                [maxx, miny, maxz],
                [maxx, miny, minz]
            ]
            xz_plane = Poly3DCollection([verts])
            xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
            #xz_plane.set_facecolor(())
            #ax.add_collection3d(xz_plane)#绘制行走平面
        fig = plt.figure(figsize=(480/96., 320/96.), dpi=96) if nb_joints == 21 else plt.figure(figsize=(10, 10), dpi=96)
        if title is not None :
            wraped_title = '\n'.join(wrap(title, 40))
            fig.suptitle(wraped_title, fontsize=16)
        ax = p3.Axes3D(fig)
        
        init()
        
        #ax.lines = []
        #ax.collections = []
        ax.view_init(elev=110, azim=-90)
        ax.dist = 7.5
        #         ax =
        plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
                     MAXS[2] - trajec[index, 1])
        #         ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)

        if index > 1:
            ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
                      trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
                      color='blue')
        #             ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])

        for i, (chain, color) in enumerate(zip(smpl_kinetic_chain, colors)):
            
            if i < 5:
                linewidth = 4.0
            else:
                linewidth = 2.0
            ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,color=color)#xyz width color
            #ax.text(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], str(chain), fontsize = 15)
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])
    
        #plt.savefig(f'./smpl_{index}.jpg', dpi=96)
        if out_name is not None : 
            plt.savefig(out_name, dpi=96)
            plt.close()
            
        else : 
            io_buf = io.BytesIO()
            fig.savefig(io_buf, format='raw', dpi=96)
            io_buf.seek(0)
            # print(fig.bbox.bounds)
            arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
                                newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
            io_buf.close()
            plt.close()
            return arr

    out = []
    for i in range(frame_number) : 
        out.append(update(i))
    out = np.stack(out, axis=0)
    return torch.from_numpy(out)


def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None) : 
    
    batch_size = len(smpl_joints_batch)
    out = []
    for i in range(batch_size) : 
        out.append(plot_3d_motion([smpl_joints_batch[i], None, title_batch[i] if title_batch is not None else None]))
        if outname is not None:
            imageio.mimsave(outname[i], np.array(out[-1]), duration=1000/20)
    out = torch.stack(out, axis=0)
    return out