File size: 8,242 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import sys
from multiprocessing.pool import Pool
import os
import logging
from typing import Union, List, Tuple, Literal

import torch
import numpy as np
import pandas as pd
import h5py
import diffusers
from diffusers import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
from einops import rearrange
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer

from ...data.extract_feature.base_extract_feature import BaseFeatureExtractor
from ...data.emb.h5py_emb import save_value_with_h5py

from ..process.image_process import dynamic_resize_image, dynamic_crop_resize_image
from ..utils.data_type_util import convert_images


class VAEFeatureExtractor(BaseFeatureExtractor):
    def __init__(
        self,
        pretrained_model_name_or_path: str,
        name: str = None,
        device: str = "cpu",
        dtype=torch.float32,
    ):
        super().__init__(device, dtype, name)
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        vae = AutoencoderKL.from_pretrained(
            pretrained_model_name_or_path, subfolder="vae"
        )
        vae.requires_grad_(False)
        self.vae = vae.to(device=device, dtype=dtype)
        vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)

    def extract_images(
        self,
        data: Union[str, List[str], Image.Image, List[Image.Image], np.ndarray],
        target_width: int = None,
        target_height: int = None,
        return_type: str = "numpy",
        input_rgb_order: str = "rgb",
    ) -> Union[np.ndarray, torch.Tensor]:
        data = convert_images(data, return_type="pil", input_rgb_order=input_rgb_order)
        if target_height is not None and target_width is not None:
            data = [
                dynamic_crop_resize_image(
                    image,
                    target_height=target_height,
                    target_width=target_width,
                )
                for image in data
            ]
        batch = self.image_processor.preprocess(data).to(
            device=self.device, dtype=self.dtype
        )
        with torch.no_grad():
            # print("batch", batch.shape, batch.dtype, batch.device, self.vae.device)
            emb = self.vae.encoder(batch)
            quant_emb = self.vae.quant_conv(emb)
        if return_type == "numpy":
            emb = emb.cpu().numpy()
            quant_emb = quant_emb.cpu().numpy()
        return emb, quant_emb

    def extract_video(
        self,
        video_dataset,
        target_width: int = None,
        target_height: int = None,
        return_type: str = "numpy",
        track_performance: bool = False,
        input_rgb_order: str = "rgb",
    ) -> Union[np.ndarray, torch.Tensor]:
        embs = []
        quant_embs = []
        sample_indexs = []
        if track_performance:
            performance = {}
        with torch.no_grad():
            for i, (batch, batch_index) in enumerate(video_dataset):
                # TODO: 现阶段复用hugging face diffusers img2img pipeline中的抽取代码,
                # 由于该代码目前只支持Image的预处理,故先将numpy.ndarray转换成PIL.Image
                batch = [Image.fromarray(batch[b_i]) for b_i in range(len(batch))]
                emb, quant_emb = self.extract_images(
                    data=batch,
                    target_width=target_width,
                    target_height=target_height,
                    return_type=return_type,
                    input_rgb_order=input_rgb_order,
                )
                embs.append(emb)
                quant_embs.append(quant_emb)
                sample_indexs.extend(batch_index)

        sample_indexs = np.array(sample_indexs)
        if return_type == "numpy":
            embs = np.concatenate(embs, axis=0)
            quant_embs = np.concatenate(quant_embs, axis=0)
        elif return_type == "torch":
            embs = torch.concat(embs)
            quant_embs = torch.concat(quant_embs)
            sample_indexs = torch.from_numpy(sample_indexs)
        return sample_indexs, embs, quant_embs

    def extract(
        self,
        data: Union[str, List[str]],
        data_type: Literal["image", "video"],
        return_type: str = "numpy",
        save_emb_path: str = None,
        save_type: str = "h5py",
        emb_key: str = "encoder_emb",
        quant_emb_key: str = "encoder_quant_emb",
        sample_index_key: str = "sample_indexs",
        insert_name_to_key: bool = False,
        overwrite: bool = False,
        save_sample_index: bool = True,
        input_rgb_order: str = "rgb",
        **kwargs,
    ) -> Union[np.ndarray, torch.tensor]:
        if self.name is not None and insert_name_to_key:
            emb_key = f"{self.name}_{emb_key}"
            quant_emb_key = f"{self.name}_{quant_emb_key}"
            sample_index_key = f"{self.name}_{sample_index_key}"
        if save_emb_path is not None and os.path.exists(save_emb_path):
            with h5py.File(save_emb_path, "r") as f:
                if (
                    not overwrite
                    and emb_key in f
                    and quant_emb_key in f
                    and sample_index_key in f
                ):
                    return None

        if data_type == "image":
            emb, quant_emb = self.extract_images(
                data=data,
                return_type=return_type,
                input_rgb_order=input_rgb_order,
                **kwargs,
            )
            if save_emb_path is None:
                return emb, quant_emb
            else:
                raise NotImplementedError("save images emb")
        elif data_type == "video":
            sample_indexs, emb, quant_emb = self.extract_video(
                video_dataset=data,
                return_type=return_type,
                input_rgb_order=input_rgb_order,
                **kwargs,
            )
            if save_emb_path is None:
                return sample_indexs, emb, quant_emb
            else:
                if save_type == "h5py":
                    self.save_video_emb_with_h5py(
                        save_emb_path=save_emb_path,
                        emb=emb,
                        emb_key=emb_key,
                        quant_emb=quant_emb,
                        quant_emb_key=quant_emb_key,
                        sample_indexs=sample_indexs,
                        sample_index_key=sample_index_key,
                        save_sample_index=save_sample_index,
                        overwrite=overwrite,
                    )
                    return sample_indexs, emb, quant_emb
                else:
                    raise ValueError(f"only support save_type={save_type}")

    @staticmethod
    def save_images_emb_with_h5py(
        save_emb_path: str,
        emb: np.ndarray = None,
        emb_key: str = "encoder_emb",
        quant_emb: np.ndarray = None,
        quant_emb_key: str = "encoder_quant_emb",
    ) -> h5py.File:
        save_value_with_h5py(save_emb_path, value=emb, key=emb_key)
        save_value_with_h5py(save_emb_path, value=quant_emb, key=quant_emb_key)

    @staticmethod
    def save_video_emb_with_h5py(
        save_emb_path: str,
        emb: np.ndarray = None,
        emb_key: str = "encoder_emb",
        quant_emb: np.ndarray = None,
        quant_emb_key: str = "encoder_quant_emb",
        sample_indexs: np.ndarray = None,
        sample_index_key: str = "sample_indexs",
        overwrite: bool = False,
        save_sample_index: bool = True,
    ) -> h5py.File:
        # save_value_with_h5py(save_emb_path, value=emb, key=emb_key, overwrite=overwrite)
        if save_sample_index:
            save_value_with_h5py(
                save_emb_path,
                value=quant_emb,
                key=quant_emb_key,
                overwrite=overwrite,
                dtype=np.float16,
            )
            save_value_with_h5py(
                save_emb_path,
                value=sample_indexs,
                key=sample_index_key,
                overwrite=overwrite,
                dtype=np.uint32,
            )