Spaces:
No application file
No application file
File size: 10,726 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# -*- coding: utf-8 -*-
from typing import Dict, List, Union
import os
import json
import traceback
import argparse
import hashlib
import librosa
import soundfile as sf
import numpy as np
import torch
from moviepy.editor import *
from .TransNetmodels import TransNetV2
from ...video_map.video_meta_info import VideoMetaInfo
from ...video_map.video_map import VideoMap
from ...video_map.video_clip import VideoClipSeq
from ...black_border import det_video_black_border
from ...utils.path_util import get_video_signature
from ...data.video_dataset import MoviepyVideoDataset, SequentialDataset
def predict(
model,
video_path,
threshold=0.3,
sample_fps=25,
content_box=None,
single_frame_ratio=1,
map_path: str = None,
ignored_keys: List = None,
) -> VideoMap:
video_hash_code, video_path = get_video_signature(path=video_path, rename=True)
basename = os.path.basename(video_path)
filename, ext = os.path.splitext(video_path)
with torch.no_grad():
(
single_frame_result,
all_frame_result,
fps,
total_frames,
duration,
height,
width,
) = model.predict_video(
video_path,
cache_path="",
c_box=content_box,
width=48,
height=27,
input_frames=10000,
overlap=100,
sample_fps=sample_fps,
)
# pred_label = single_frame_ratio * single_frame_result + (1 - single_frame_ratio) * all_frame_result
pred_label = np.array([single_frame_result, all_frame_result])
pred_label = pred_label.max(axis=0)
transition_index = np.where(pred_label > threshold)[0] # 转场帧位置
transition_index = transition_index.astype(np.float)
# 对返回结果做后处理合并相邻帧
result_transition = []
for i, transition in enumerate(transition_index):
if i == 0:
result_transition.append([transition])
else:
if abs(result_transition[-1][-1] - transition) <= 4:
result_transition[-1].append(transition)
else:
result_transition.append([transition])
result = [[0]]
for item in result_transition:
start_idx = int(item[0])
end_idx = int(item[-1])
if len(item) > 3:
if max(pred_label[start_idx : end_idx + 1]) > 0.3:
result.append([item[0], item[-1]])
elif len(item) > 1:
if max(pred_label[start_idx : end_idx + 1]) > 0.4:
result.append([item[0], item[-1]])
else:
if pred_label[start_idx] > 0.45:
result.append(item)
result.append([pred_label.shape[0]])
video_meta_info_dct = {
"video_name": filename,
"video_path": video_path,
"video_file_hash_code": video_hash_code,
"fps": fps,
"frame_num": total_frames,
"duration": duration,
"height": height,
"width": width,
"content_box": content_box,
"sample_fps": sample_fps,
}
video_meta_info = VideoMetaInfo.from_video_path(video_path)
video_meta_info.__dict__.update(video_meta_info_dct)
video_clipseq = []
slice_id = 0
for i in range(len(result) - 1):
if len(result[i]) == 1:
vidoe_clip = {
"time_start": round(result[i][0] / sample_fps, 4), # 开始时间
"duration": round(
result[i + 1][0] / sample_fps - result[i][0] / sample_fps,
4,
), # 片段持续时间
"frame_start": result[i][0],
"frame_end": result[i + 1][0],
"clipid": slice_id, # 片段序号,
"cliptype": "body",
}
video_clipseq.append(vidoe_clip)
slice_id += 1
elif len(result[i]) == 2:
vidoe_clip = {
"time_start": round(result[i][0] / sample_fps, 4), # 开始时间
"duration": round(
result[i][1] / sample_fps - result[i][0] / sample_fps,
4,
), # 片段持续时间
"frame_start": result[i][0],
"frame_end": result[i][1],
"clipid": slice_id, # 片段序号,
"cliptype": "transition",
}
video_clipseq.append(vidoe_clip)
slice_id += 1
vidoe_clip = {
"time_start": round(result[i][1] / sample_fps, 4), # 开始时间
"duration": round(
result[i + 1][0] / sample_fps - result[i][1] / sample_fps,
4,
), # 片段持续时间
"frame_start": result[i][1],
"frame_end": result[i + 1][0],
"clipid": slice_id, # 片段序号,
"cliptype": "body",
}
video_clipseq.append(vidoe_clip)
slice_id += 1
video_clipseq = VideoClipSeq.from_data(video_clipseq)
video_map = VideoMap(meta_info=video_meta_info, clipseq=video_clipseq)
if map_path is not None:
with open(map_path, "w") as f:
json.dump(video_map.to_dct(ignored_keys=ignored_keys), f, indent=4)
return video_map, single_frame_result, all_frame_result
class TransNetV2Predictor(object):
def __init__(self, model_path: str, device: str) -> None:
# 模型初始化和参数载入
self.model = TransNetV2()
checkpoint = torch.load(model_path) # 载入模型参数
self.model.load_state_dict(
{k.replace("model.", ""): v for k, v in checkpoint.items()}
)
# model.load_state_dict(checkpoint['state_dict'])
self.model.eval().to(device)
self.device = device
def __call__(self, video_path, map_path, content_box) -> Dict:
return predict(
self.model, video_path, map_path=map_path, content_box=content_box
)
# TODO: is writing
def predict_video_write(
self,
video_dataset: Union[str, SequentialDataset],
c_box=None,
width=48,
height=27,
input_frames=100,
overlap=30,
sample_fps=30,
threshold=0.3,
drop_last=False,
):
# check parameters
assert overlap % 2 == 0
assert input_frames > overlap
# prepare video_dataset
if isinstance(video_dataset, str):
video_dataset = MoviepyVideoDataset(video_dataset)
step = input_frames - overlap
if (
video_dataset.step != step
or video_dataset.time_size != input_frames
or video_dataset.drop_last != drop_last
):
video_dataset.generate_sample_idxs(
time_size=input_frames, step=step, drop_last=drop_last
)
fps = video_dataset.fps
duration = video_dataset.duration
total_frames = video_dataset.total_frames
w, h = video_dataset.size
if c_box:
video_dataset.cap.crop(*c_box)
single_frame_pred_lst, all_frame_pred_lst, index_lst = [], [], []
for i, batch in enumerate(video_dataset):
data, data_index = batch.data, batch.index
data = data.to(self.device)
# shape: batch dim x video frames x frame height x frame width x RGB (not BGR) channels
single_frame_pred, all_frame_pred = self.forward(data.unsqueeze(0)) # 前向推理
# single_frame_pred = F.softmax(single_frame_pred, dim=-1) # 获得每一帧对应的类别概率
# single_frame_pred = torch.argmax(single_frame_pred, dim=-1).reshape(-1)
single_frame_pred = torch.sigmoid(single_frame_pred).reshape(-1)
all_frame_pred = torch.sigmoid(all_frame_pred).reshape(-1)
# single_frame_pred = (single_frame_pred>threshold)*1
if total_frames > data_index[-1]:
if i == 0:
single_frame_pred_label = single_frame_pred[: -overlap // 2]
all_frame_pred_label = all_frame_pred[: -overlap // 2]
else:
single_frame_pred_label = single_frame_pred[
overlap // 2 : -overlap // 2
]
all_frame_pred_label = all_frame_pred[overlap // 2 : -overlap // 2]
else:
if i == 0:
single_frame_pred_label = single_frame_pred
all_frame_pred_label = all_frame_pred
else:
single_frame_pred_label = single_frame_pred[overlap // 2 :]
all_frame_pred_label = all_frame_pred[overlap // 2 :]
single_frame_pred_lst.append(single_frame_pred_label)
all_frame_pred_lst.append(all_frame_pred_label)
index_lst.extent(data_index)
single_frame_pred_label = torch.concat(single_frame_pred_lst, dim=0)
all_frame_pred_label = torch.concat(all_frame_pred_lst, dim=0)
single_frame_pred_label = single_frame_pred_label.cpu().numpy()
all_frame_pred_label = all_frame_pred_label.cpu().numpy()
# 对返回结果做后处理合并相邻帧
pred_label = np.array([single_frame_pred_label, all_frame_pred_label])
pred_label = pred_label.max(axis=0)
transition_index = np.where(pred_label > threshold)[0] # 转场帧位置
transition_index = transition_index.astype(np.float)
result_transition = []
for i, transition in enumerate(transition_index):
if i == 0:
result_transition.append([transition])
else:
if abs(result_transition[-1][-1] - transition) <= 4:
result_transition[-1].append(transition)
else:
result_transition.append([transition])
result = [[0]]
for item in result_transition:
start_idx = int(item[0])
end_idx = int(item[-1])
if len(item) > 3:
if max(pred_label[start_idx : end_idx + 1]) > 0.3:
result.append([item[0], item[-1]])
elif len(item) > 1:
if max(pred_label[start_idx : end_idx + 1]) > 0.4:
result.append([item[0], item[-1]])
else:
if pred_label[start_idx] > 0.45:
result.append(item)
result.append([pred_label.shape[0]])
return (
single_frame_pred_label,
all_frame_pred_label,
fps,
total_frames,
duration,
h,
w,
)
|